[1] Mandelbrot B B. How Long is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension[J]. Science, 1967, 156(3775):636-638 doi:  10.1126/science.156.3775.636
[2] Jiang B. The Fractal Nature of Maps and Mapping[J]. International Journal of Geographical Information Science, 2015, 29(1):159-174 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/13658816.2014.953165
[3] Ghanbarian A B, Millán H B, Huang G H. A Review of Fractal, Prefractal and Pore-Solid-Fractal Models for Parameterizing the Soil Water Retention Curve[J]. Canadian Journal of Soil Science, 2011, 91(1):1-14 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=32ec2165a595acb74cf22bd134a720bd
[4] 朱华, 姬翠翠.分形理论及其应用[M].北京:科学出版社, 2011

Zhu Hua, Ji Cuicui. Fractal Theory and Its Applications[M]. Beijing:China Science Publishing &Media Ltd, 2011
[5] 彭东亮, 邓敏, 赵彬彬.河网多尺度Morphing的变换方法研究[J].遥感学报, 2012, 16(5):953-968 http://d.old.wanfangdata.com.cn/Periodical/ygxb201205006

Peng Dongliang, Deng Min, Zhao Binbin. Multi-Scale Transformation of River Networks Based on Morphing Technology[J]. Journal of Remote Sen-sing, 2012, 16(5):953-968 http://d.old.wanfangdata.com.cn/Periodical/ygxb201205006
[6] 刘鹏程, 艾廷华, 毕旭.傅里叶级数支持下的等高线多尺度表达模型[J].武汉大学学报·信息科学版, 2013, 38(2):221-224 http://ch.whu.edu.cn/CN/abstract/abstract6109.shtml

Liu Pengcheng, Ai Tinghua, Bi Xu. Multi-Scale Representation Model for Contour Based on Fourier Series[J]. Geomatics and Information Science of Wuhan University, 2013, 38(2):221-224 http://ch.whu.edu.cn/CN/abstract/abstract6109.shtml
[7] Shu X, Pan L, Wu X J. Multi-Scale Contour Flexibility Shape Signature for Fourier Descriptor[J]. Journal of Visual Communication and Image Representation, 2015, 26(1):161-167 http://www.sciencedirect.com/science/article/pii/S1047320314001886
[8] 王桥.地图曲线的分形插值[J].武测科技, 1995(4):8-13 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199500002854

Wang Qiao. Fractal Interpolation of Map Curve[J]. WTUSM Bulletin of Science and Technology, 1995(4):8-13 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199500002854
[9] Barnsley M F. Fractal Functions and Interpolation[J]. Constructive Approximation, 1986, 2(1):303-329 doi:  10.1007/BF01893434
[10] 王宏勇, 樊昭磊.具有函数纵向尺度因子的分形插值函数的分析特性[J].数学学报, 2011, 54(1):147-158 http://d.old.wanfangdata.com.cn/Periodical/sxxb201101016

Wang Hongyong, Fan Zhaolei. Analytical Characteristics of Fractal Interpolation Functions with Function Vertical Scaling Factors[J]. Acta Mathe-matica Sinica, 2011, 54(1):147-158 http://d.old.wanfangdata.com.cn/Periodical/sxxb201101016
[11] Metzler W, Yun C H. Construction of Fractal Interpolation Surfaces on Rectangular Grids[J]. International Journal of Bifurcation and Chaos, 2011, 20(12):4079-4086 http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1307.3229
[12] 毋河海.扩展分维在地图信息综合中的应用[J].测绘科学, 2010, 35(4):10-13 http://d.old.wanfangdata.com.cn/Periodical/chkx201004002

Wu Hehai. Application of Extended Fractal Dimension in Map Generalization[J]. Science of Surve-ying and Mapping, 2010, 35(4):10-13 http://d.old.wanfangdata.com.cn/Periodical/chkx201004002
[13] 张华国, 黄韦艮, 周长宝.一种新的地理线要素分形插值方法[J].测绘学报, 2002, 31(3):255-261 doi:  10.3321/j.issn:1001-1595.2002.03.014

Zhang Huaguo, Huang Weigen, Zhou Changbao. A New Fractal Interpolation Approach for Geographic Curve[J]. Acta Geodaetica et Cartographica Sinica, 2002, 31(3):255-261 doi:  10.3321/j.issn:1001-1595.2002.03.014
[14] 黄亚锋, 艾廷华, 刘耀林, 等.顾及地理特征保持的溺谷海岸线化简算法[J].测绘学报, 2013, 42(4):595-601 http://d.old.wanfangdata.com.cn/Periodical/chxb201304018

Huang Yafeng, Ai Tinghua, Liu Yaolin, et al. Geo-graphic-Feature Oriented Ria Coastline Simplification[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(4):595-601 http://d.old.wanfangdata.com.cn/Periodical/chxb201304018
[15] 王桥, 吴纪桃.一种新分维估值方法作为工具的自动制图综合[J].测绘学报, 1996, 25(1):11-16 http://www.cnki.com.cn/Article/CJFDTotal-CHXB601.001.htm

Wang Qiao, Wu Jitao. Automated Cartographic Generalization Based on a New Method of Fractal Dimension Estimation[J]. Acta Geodaetica et Cartographica Sinica, 1996, 25(1):11-16 http://www.cnki.com.cn/Article/CJFDTotal-CHXB601.001.htm
[16] 王桥, 吴纪桃.地图上曲线长度归算的分形方法研究[J].武测科技, 1996(3):5-7 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600003107

Wang Qiao, Wu Jitao. The Research on Fractal Method of Determining Reduced Length of Cartographic Lines[J]. WTUSM Bulletin of Science and Technology, 1996(3):5-7 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600003107
[17] Wang Z, Muller J C. Line Generalization Based on Analysis of Shape Characteristics[J]. Cartography and Geographic Information Systems, 1998, 25(1):3-15 doi:  10.1559-152304098782441750/
[18] 朱强, 武芳, 钱海忠, 等.一种顾及认知规律的曲线弯曲识别方法[J].辽宁工程技术大学学报, 2014, 33(4):521-526 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=SciencePaper201408110000011276

Zhu Qiang, Wu Fang, Qian Haizhong, et al. An Identification Method of Line Curves Based on Cognitive Laws[J]. Journal of Liaoning Technical University, 2014, 33(4):521-526 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=SciencePaper201408110000011276
[19] Beckett P. Cartographic Generalisation[J]. Cartographic Journal, 1977, 14(1):49-55 doi:  10.1179/caj.1977.14.1.49