[1] |
Singh A. Review Article Digital Change Detection Techniques Using Remotely-Sensed Data[J]. International Journal of Remote Sensing, 1989, 10(6):989-1003, doi: 10.1080/01431168908903939 |
[2] |
Ban Y, Yousif O.Change Detection Techniques: A Review[M]//Multitemporal Remote Sensing. Stockholm: Springer, 2016 |
[3] |
Weismiller R, Kristoff S, Scholz D, et al.Change Detection in Coastal Zone Environments[J]. Photogrammetric Engineering and Remote Sensing, 1977, 43(12):1533-1539 |
[4] |
马建文, 田国良, 王长耀, 等.遥感变化检测技术发展综述[J].地球科学进展, 2004, 19(2):192-196 doi: 10.3321/j.issn:1001-8166.2004.02.004
Ma Jianwen, Tian Guoliang, Wang Changyao, et al.Review of the Development of Remote Sensing Change Detection Technology[J]. Advance in Earth Sciences, 2004, 19(2):192-196 doi: 10.3321/j.issn:1001-8166.2004.02.004 |
[5] |
Cho S, Haralick R, Yi S.Improvement of Kittler and Illingworth's Minimum Error Thresholding[J]. Pattern Recogn, 1989, 22(5):609-617 doi: 10.1016/0031-3203(89)90029-0 |
[6] |
Bruzzone L, Prieto D F.Automatic Analysis of the Difference Image for Unsupervised Change Detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(3):1171-1182 doi: 10.1109/36.843009 |
[7] |
Yuan F, Sawaya K E, Loeffelholz B C, et al. Land Cover Classification and Change Analysis of the Twin Cities (Minnesota) Metropolitan Area by Multitemporal Landsat Remote Sensing[J]. Remote Sensing of Environment, 2005, 98(2):317-328 http://www.sciencedirect.com/science/article/pii/S0034425705002646 |
[8] |
Zhou L, Cao G, Li Y, et al. Change Detection Based on Conditional Random Field with Region Connection Constraints in High-Resolution Remote Sensing Images[J]. IEEE J Sel Top Appl Earth Obs Remote Sens, 2016, doi: 10.1109/JSTARS.2016.2514610 |
[9] |
Wu K, Du Q, Wang Y, et al.Supervised Sub-Pixel Mapping for Change Detection from Remotely Sensed Images with Different Resolutions[J]. Remote Sensing, 2017, 9:284, doi: 10.3390/rs9030284 |
[10] |
Xu Y, Lin L, Meng D. Learning-Based Sub-Pixel Change Detection Using Coarse Resolution Satellite Imagery[J]. Remote Sensing, 2017, 9:709; doi: 10.3390/rs9070709 |
[11] |
孙天天, 邓文彬, 马琳.基于面向对象分类的城市土地利用变化检测[J].地理空间信息, 2018, 16(9):95-98 doi: 10.3969/j.issn.1672-4623.2018.09.028
Sun Tiantian, Deng Wenbin, Ma Lin.Urban Land Use Change Detection Based on Object-Oriented Classification[J]. Geospatial Information, 2018, 16(9):95-98 doi: 10.3969/j.issn.1672-4623.2018.09.028 |
[12] |
李亮, 王蕾, 孙晓鹏, 等.面向对象变化向量分析的遥感影像变化检测[J].遥感信息, 2017, 32(6):71-77 doi: 10.3969/j.issn.1000-3177.2017.06.012
Li Liang, Wang Lei, Sun Xiaopeng, et al. Remote Sensing Change Detection Method Based on Object-Oriented Change Vector Analysis[J]. Remote Sen-sing Information, 2017, 32(6):71-77 doi: 10.3969/j.issn.1000-3177.2017.06.012 |
[13] |
Huang F, Chen L, Yin K, et al. Object Oriented Change Detection and Damage Assessment Using High Resolution Remote Sensing Images, Tangjiao Landslide, Three Gorges Reservoir, China[J]. Environmental Earth Sciences, 2018, 77:183 doi: 10.1007/s12665-018-7334-5 |
[14] |
Bhatt A, Ghosh S K, Kumar A. Spectral Indices Based Object Oriented Classification for Change Detection Using Satellite Data[J]. Int J Syst Assur Eng Manag, 2018, 9(1):33-42 doi: 10.1007/s13198-016-0458-7 |
[15] |
Menz G. From Change Detection to Change Modelling[C]. International Workshop on Change Detection, Wuhan, China, 2013 |
[16] |
Lyu H, Lu H, Mou L.Learning a Transferable Change Rule from a Recurrent Neural Network for Land Cover Change Detection[J]. Remote Sensing, 2016, 8:506, doi: 10.3390/rs8060506 |
[17] |
Cao G, Wang B, Xavier H C, et al.A New Diffe-rence Image Creation Method Based on Deep Neural Networks for Change Detection in Remote Sensing Images[J]. International Journal of Remote Sen-sing, 2017, 38(23):7161-7175 doi: 10.1080/01431161.2017.1371861 |
[18] |
Hao M, Shi W, Zhang H, et al.Unsupervised Change Detection with Expectation-Maximization-Based Level Set[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(1):210-214 doi: 10.1109/LGRS.2013.2252879 |
[19] |
Hao M, Shi W, Deng K, et al.Superpixel-Based Active Contour Model for Unsupervised Change Detection from Satellite Images[J]. International Journal of Remote Sensing, 2016, 37(18):4276-4295 doi: 10.1080/01431161.2016.1210838 |
[20] |
Im J, Jensen J R. A Change Detection Model Based on Neighborhood Correlation Image Analysis and Decision Tree Classification[J]. Remote Sensing of Environment, 2005, 99:326-340 doi: 10.1016/j.rse.2005.09.008 |
[21] |
Ghosh S, Bruzzone L, Patra S, et al.A Context-Sensitive Technique for Unsupervised Change Detection Based on Hopfield-Type Neural Networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45:778-789, doi: 10.1109/TGRS.2006.888861 |
[22] |
Zhang P, Lv Z, Shi W.Object-Based Spatial Feature for Classification of very High Resolution Remote Sensing Images[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(6):1572-1576 doi: 10.1109/LGRS.2013.2262132 |
[23] |
Zhang P, Shi W, Wong M S, et al.A Reliability-Based Multi-algorithm Fusion Technique in Detecting Changes in Land Cover[J]. Remote Sensing, 2013, 5(3):1134-1151 doi: 10.3390/rs5031134 |
[24] |
Zhang P, Lv Z, Shi W. Local Spectrum-Trend Similarity Approach for Detecting Land-Cover Change by Using SPOT-5 Satellite Images[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(4):738-742 doi: 10.1109/LGRS.2013.2278205 |