[1] 张良培, 杜博, 张乐飞.高光谱遥感影像处理[M].北京:科学出版社, 2014

Zhang Liangpei, Du Bo, Zhang Lefei. Hyperspectral Image Processing[M]. Beijing:Science Press, 2014
[2] 安如, 陆彩红, 王慧麟, 等.三江源典型区草地退化Hyperion高光谱遥感识别研究[J].武汉大学学报·信息科学版, 2018, 43(3):399-405 http://ch.whu.edu.cn/CN/abstract/abstract5998.shtml

An Ru, Lu Caihong, Wang Huilin, et al. Remote Sensing Identification of Rangeland Degradation Using Hyperion Hyperspectral Image in a Typical Area for Three-River Headwater Region, Qinghai, China[J]. Geomatics and Information Science of Wuhan University, 2018, 43(3):399-405 http://ch.whu.edu.cn/CN/abstract/abstract5998.shtml
[3] Onojeghuo A O, Blackburn G A, Huang J, et al. Applications of Satellite 'Hyper-Sensing' in Chinese Agriculture:Challenges and Opportunities[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 64:62-86 doi:  10.1016/j.jag.2017.09.005
[4] 秦占飞, 申健, 谢宝妮, 等.引黄灌区水稻叶面积指数的高光谱估测模型[J].武汉大学学报·信息科学版, 2017, 42(8):1159-1166 http://ch.whu.edu.cn/CN/abstract/abstract5811.shtml

Qin Zhanfei, Shen Jian, Xie Baoni, et al. Hyperspectral Estimation Model for Predicting LAI of Rice in Ningxia Irrigation Zone[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8):1159-1166 http://ch.whu.edu.cn/CN/abstract/abstract5811.shtml
[5] Yue J, Feng H, Yang G, et al. A Comparison of Regression Techniques for Estimation of Above-Ground Winter Wheat Biomass Using Near-Surface Spectroscopy[J]. Remote Sensing, 2018, 10(1):66 http://adsabs.harvard.edu/abs/2018RemS...10...66Y
[6] Zhong Y, Zhang L. An Adaptive Artificial Immune Network for Supervised Classification of Multi-/Hyperspectral Remote Sensing Imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(3):894-909 doi:  10.1109/TGRS.2011.2162589
[7] Zhong Y, Zhang S, Zhang L. Automatic Fuzzy Clustering Based on Adaptive Multi-Objective Differential Evolution for Remote Sensing Imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(5):2290-2301 doi:  10.1109/JSTARS.2013.2240655
[8] Zhong Y, Zhao L, Zhang L. An Adaptive Differential Evolution Endmember Extraction Algorithm for Hyperspectral Remote Sensing Imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(6):1061-1065 doi:  10.1109/LGRS.2013.2285476
[9] Zhong Y, Cao Q, Zhao J, et al. Optimal Decision Fusion for Urban Land-Use/Land-Cover Classification Based on Adaptive Differential Evolution Using Hyperspectral and LiDAR Data[J]. Remote Sen-sing, 2017, 9(8):868 doi:  10.3390/rs9080868
[10] Feng J, Jiao L C, Zhang X, et al. Hyperspectral Band Selection Based on Trivariate Mutual Information and Clonal Selection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(7):4092-4105 doi:  10.1109/TGRS.2013.2279591
[11] Zhang B, Sun X, Gao L, et al. Endmember Extraction of Hyperspectral Remote Sensing Images Based on the Discrete Particle Swarm Optimization Algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(11):4173-4176 doi:  10.1109/TGRS.2011.2131145
[12] Zhang B, Sun X, Gao L, et al. Endmember Extraction of Hyperspectral Remote Sensing Images Based on the Ant Colony Optimization (ACO) Algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(7):2635-2646 doi:  10.1109/TGRS.2011.2108305
[13] Zhang B, Gao J, Gao L, et al. Improvements in the Ant Colony Optimization Algorithm for Endmember Extraction from Hyperspectral Images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(2):522-530 doi:  10.1109/JSTARS.2012.2236821
[14] Shor P W. Algorithms for Quantum Computation: [C]. IEEE Symposium on Foundations of Computer Science, Mitwaukee, WI, USA, 1995
[15] Grover L K. A Fast Quantum Mechanical Algorithm for Database Search[C]. 28th ACM Symposium on Theory of Computing, Philadelphia, USA, 1996
[16] Li P, Li S. Quantum Ant Colony Algorithm for Continuous Space Optimization[J]. Control Theory and Applications, 2008, 25(2):237-241
[17] Han K H, Kim J H. Genetic Quantum Algorithm and Its Application to Combinatorial Optimization Problem[C]. The IEEE 2000 Congress on Evolutionary Computation, La Jolla, USA, 2002
[18] Sun J, Feng B, Xu W. Particle Swarm Optimization with Particles Having Quantum Behavior[C]. IEEE Congress on Evolutionary Computation, California, USA, 2004
[19] Hinterding R. Representation, Constraint Satisfaction and the Knapsack Problem[C]. The IEEE Congress on Evolutionary Computation, Washington D C, USA, 1999
[20] Hey T. Quantum Computing:An Introduction[J]. Computing and Control Engineering Journal, 1998, 10(3):105-112 http://d.old.wanfangdata.com.cn/Periodical/xdjsj-xby201515004
[21] Clerc M, Kennedy J. The Particle Swarm-Explosion, Stability, and Convergence in a Multidimensional Complex Space[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(1):58-73 doi:  10.1109/4235.985692
[22] Sun J, Fang W, Wu X, et al. Quantum-Behaved Particle Swarm Optimization:Analysis of Individual Particle Behavior and Parameter Selection[J]. Evolutionary Computation, 2012, 20(3):349-393 doi:  10.1162/EVCO_a_00049
[23] Du B, Zhang L. Target Detection Based on a Dynamic Subspace[J]. Pattern Recognition, 2014, 47(1):344-358 http://dl.acm.org/citation.cfm?id=2533549
[24] Li N, Du P, Zhao H. Independent Component Analysis Based on Improved Quantum Genetic Algorithm: Application in Hyperspectral Images[C]. IEEE International Geoscience and Remote Sensing Symposium, Seoul, Korea, 2005
[25] Boardman J W. Automating Spectral Unmixing of AVIRIS Data Using Convex Geometry Concepts[C]. 4th Annu JPL Airborne Geoscience Workshop, Washington D C, USA, 1993
[26] Winter M E. N-FINDR:An Algorithm for Fast Autonomous Spectral End-Member Determination in Hyperspectral Data[J]. Proceedings of SPIE-The International Society for Optical Enginee-ring, 1999, 3753:266-275 http://d.old.wanfangdata.com.cn/Periodical/dzkxxk201202041
[27] Chang C I, Wu C C, Liu W, et al. A New Growing Method for Simplex-Based Endmember Extraction Algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(10):2804-2819 doi:  10.1109/TGRS.2006.881803
[28] Chan T H, Ma W K, Ambikapathi A M, et al. A Simplex Volume Maximization Framework for Hyperspectral Endmember Extraction[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(11):4177-4193 doi:  10.1109/TGRS.2011.2141672
[29] Du Q. A New Sequential Algorithm for Hyperspectral Endmember Extraction[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(4):695-699 doi:  10.1109/LGRS.2011.2178815
[30] Luo W, Zhang B, Jia X. New Improvements in Pa-rallel Implementation of N-FINDR Algorithm[J]. IEEE Transactions on Geoscience and Remote Sen-sing, 2012, 50(10):3648-3659 doi:  10.1109/TGRS.2012.2185056
[31] Liu R, Zhang L, Du B. A Novel Endmember Extraction Method for Hyperspectral Imagery Based on Quantum-Behaved Particle Swarm Optimization[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(4):1610-1631 doi:  10.1109/JSTARS.2016.2640274
[32] Xu M, Zhang L, Du B, et al. A Mutation Operator Accelerated Quantum-Behaved Particle Swarm Optimization Algorithm for Hyperspectral Endmember Extraction[J]. Remote Sensing, 2017, 9(3):197 doi:  10.3390/rs9030197
[33] Atkinson P M. Mapping Sub-pixel Boundaries from Remotely Sensed Images[J]. Innovations in GIS, 1997, 4:167-180 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0227548819/
[34] Villa A, Chanussot J, Benediktsson J A, et al. Unsupervised Methods for the Classification of Hyperspectral Images with Low Spatial Resolution[J]. Pattern Recognition, 2013, 46(6):1556-1568 doi:  10.1016/j.patcog.2012.10.030
[35] Thornton M W, Atkinson P M, Holland D A. Sub-pixel Mapping of Rural Land Cover Objects from Fine Spatial Resolution Satellite Sensor Imagery Using Super-Resolution Pixel-Swapping[J]. International Journal of Remote Sensing, 2006, 27(3):473-491 doi:  10.1080/01431160500207088
[36] Ertürk A, Güllü M K, Çeşmeci D, et al. Spatial Resolution Enhancement of Hyperspectral Images Using Unmixing and Binary Particle Swarm Optimization[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(12):2100-2104 doi:  10.1109/LGRS.2014.2320135