[1] Titterton D H, Weston J L. Strapdown Inertial Navigation Technology[M]. 2nd ed. London: The Institution of Engineering and Technology, 2004
[2] Chang L B, Hu B Q, Li A, et al. Strapdown Inertial Navigation System Alignment Based on Marginalised Unscented Kalman Filter[J]. IET Science Measurement & Technology, 2013, 7(2): 128-138 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0230046694
[3] 徐晓苏, 周峰, 张涛, 等.基于四元数自适应卡尔曼滤波的快速对准算法[J].中国惯性技术学报, 2016, 24(4): 454-459 http://d.old.wanfangdata.com.cn/Periodical/zggxjsxb201604007

Xu Xiaosu, Zhou Feng, Zhang Tao, et al. Initial Alignment Algorithm for SINS Based on Quaternion Adaptive Kalman Filter[J]. Journal of Chinese Inertial Technology, 2016, 24(4): 454-459 http://d.old.wanfangdata.com.cn/Periodical/zggxjsxb201604007
[4] Fang J C, Yang S.Study on Innovation Adaptive EKF for In-flight Alignment of Airborne POS[J]. IEEE Transactions on Instrumentation & Measu-rement, 2011, 60(4): 1 378-1 388 http://ieeexplore.ieee.org/document/5725270/
[5] Li W L, Wang J L, Lu L Q, et al. A Novel Scheme for DVL-Aided SINS In-motion Alignment Using UKF Techniques[J]. Sensors, 2013, 13 (1): 1 046-1 063 doi:  10.3390/s130101046
[6] 苏宛新.自适应UKF滤波在SINS初始对准中的应用[J].中国惯性技术学报, 2011, 19(5): 532-536 http://d.old.wanfangdata.com.cn/Periodical/zggxjsxb201105006

Su Wanxin. Application of Adaptive UKF Filter Technique in Initial Alignment of SINS[J]. Journal of Chinese Inertial Technology, 2011, 19(5): 532-536 http://d.old.wanfangdata.com.cn/Periodical/zggxjsxb201105006
[7] 杨元喜, 高为广.两种渐消滤波与自适应抗差滤波的综合比较分析[J].武汉大学学报·信息科学版, 2006, 31(11): 980-982 http://ch.whu.edu.cn/CN/abstract/abstract2598.shtml

Yang Yuanxi, Gao Weiguang. Comparison of Two Fading Filters and Adaptively Robust Filter[J]. Geomatics and Information Science of Wuhan University, 2006, 31(11): 980-982 http://ch.whu.edu.cn/CN/abstract/abstract2598.shtml
[8] 张金槐.关于自适应滤波技术的一些思考[J].国防科技大学学报, 1994, 16(3): 68-79 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400093690

Zhang Jinhuai. Some Thoughts on Adaptive Filtering Technique[J]. Journal of National University of Defense Technology, 1994, 16(3): 68-79 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400093690
[9] Tarn T J, Zaborszky J. A Practical, Nondiverging Filter[J]. AIAA Journal, 1970, 8(6):1 127-1 133 doi:  10.2514/3.5842
[10] 夏启军, 孙优贤, 周春晖.渐消卡尔曼滤波器的最佳自适应算法及其应用[J].自动化学报, 1990, 16(3): 210-216 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000002237876

Xia Qijun, Sun Youxian, Zhou Chunhui. An Optimal Adaptive Algorithm for Fading Kalman Filter and Its Application[J]. Acta Automatica Sinica, 1990, 16(3): 210-216 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000002237876
[11] Najjaran H, Goldenberg A. Real-Time Motion Planning of an Automous Mobile Manipulator Using a Fuzzy Adaptive Kalman Filter[J]. Robotics and Autonomous Systems, 2007, 55(2): 96-106 doi:  10.1016/j.robot.2006.07.002
[12] 徐定杰, 贺瑞, 沈锋, 等.基于新息协方差的自适应渐消卡尔曼滤波器[J].系统工程与电子技术, 2011, 33(12): 2 696-2 699 http://d.old.wanfangdata.com.cn/Periodical/xtgcydzjs201112023

Xu Dingjie, He Rui, Shen Feng, et al. Adaptive Fading Kalman Filter Based on Innovation Covariance[J]. Systems Engineering and Electronics, 2011, 33(12): 2 696-2 699 http://d.old.wanfangdata.com.cn/Periodical/xtgcydzjs201112023
[13] Geng Y R, Wang J L. Adaptive Estimaion of Multiple Fading Factors in Kalman Filter for Navigation Applications[J]. GPS Solutions, 2008, 12(4): 273-279 doi:  10.1007/s10291-007-0084-6
[14] 高伟, 李敬春, 奔粤阳, 等.基于多重渐消因子的自适应卡尔曼滤波器[J].系统工程与电子技术, 2014, 36(7): 1 405-1 409 http://d.old.wanfangdata.com.cn/Periodical/xtgcydzjs201407028

Gao Wei, Li Jingchun, Ben Yueyang, et al. Adaptive Kalman Filter Based on Multiple Fading Factors[J]. Systems Engineering and Electronics, 2014, 36(7): 1 405-1 409 http://d.old.wanfangdata.com.cn/Periodical/xtgcydzjs201407028
[15] 钱华明, 葛磊, 彭宇.多渐消因子卡尔曼滤波及其在SINS初始对准中的应用[J].中国惯性技术学报, 2012, 20(3): 287-291 doi:  10.3969/j.issn.1005-6734.2012.03.008

Qian Huaming, Ge Lei, Peng Yu. Multiple Fading Kalman Filter and Its Application in SINS Initial Alignment[J]. Journal of Chinese Inertial Technology, 2012, 20(3): 287-291 doi:  10.3969/j.issn.1005-6734.2012.03.008
[16] 薛海建, 郭晓松, 周召发.基于自适应多重渐消因子卡尔曼滤波的SINS初始对准方法[J].系统工程与电子技术, 2017, 39(3): 620-626 http://d.old.wanfangdata.com.cn/Periodical/xtgcydzjs201703024

Xue Haijian, Guo Xiaosong, Zhou Zhaofa. SINS Initial Alignment Method Based on Adaptive Multiple Fading Factors Kalman Filter[J]. Systems Engineering and Electronics, 2017, 39(3): 620-626 http://d.old.wanfangdata.com.cn/Periodical/xtgcydzjs201703024
[17] Gao W X, Miao L J, Ni M L. Multiple Fading Factors Kalman Filter for SINS Static Alignment Application[J]. Chinese Journal of Aeronautics, 2011, 24(4): 476-483 doi:  10.1016/S1000-9361(11)60055-1
[18] Chang G B, Liu M. M-Estimator-Based Robust Kalman Filter for Systems with Process Modeling Errors and Rank Deficient Measurement Models[J]. Nonlinear Dynamics, 2015, 80(3): 1 431-1 449 doi:  10.1007/s11071-015-1953-0
[19] Chang G B. Robust Kalman Filtering Based on Mahalanobis Distance as Outlier Judging Criterion[J]. Journal of Geodesy, 2014, 88(4): 391-401 doi:  10.1007/s00190-013-0690-8
[20] Chang G B, Liu M. An Adaptive Fading Kalman Filter Based on Mahalanobis Distance[J]. Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2015, 229(6): 1 114-1 123 doi:  10.1177/0954410014545181
[21] Xia Q J, Rao M, Ying Y Q, et al. Adaptive Fading Kalman Filter with an Application[J]. Automatica, 1994, 30(8): 1 333-1 338 doi:  10.1016/0005-1098(94)90112-0
[22] Ren D. Failure Dection of Dynamical Systems with the State Chi-square Test[J]. Journal of Guidance Control and Dynamics, 1994, 17(2): 271-277 doi:  10.2514/3.21193
[23] 张忠占, 徐兴忠.应用数理统计[M].北京:机械工业出版社, 2008

Zhang Zhongzhan, Xu Xingzhong. Mathematical Statistics[M]. Beijing: China Machine Press, 2008