[1] Gray R M, Cosman P C, Oehler K L. Neural Network Implementation of Adaptive Vector Quantization for Image Compression[J]. Global Journal of Computer Science & Technology, 2014, 59(4):91-96 http://dl.acm.org/citation.cfm?id=197770 [2] 陈善学, 郑文静, 张佳佳, 等.变换域离散度排序的高光谱图像快速压缩算法[J].武汉大学学报·信息科学版, 2016, 41(7):868-874 http://ch.whu.edu.cn/CN/abstract/abstract5477.shtml Chen Shanxue, Zheng Wenjing, Zhang Jiajia, et al. Fast Compression Algorithm for Hyperspectral Image Based on Dispersion Sorting in Transform Domain[J]. Geomatics and Information Science of Wuhan University, 2016, 41(7):868-874 http://ch.whu.edu.cn/CN/abstract/abstract5477.shtml [3] 黄伟明, 杨建宇, 陈彦清, 等.基于扇形筛选法的矢量数据压缩方法[J].武汉大学学报·信息科学版, 2016, 41(4):487-491 http://ch.whu.edu.cn/CN/abstract/abstract5419.shtml Huang Weiming, Yang Jianyu, Chen Yanqing, et al. Method of Vector Data Compression Based on Sector Screening[J]. Geomatics and Information Science of Wuhan University, 2016, 41(4):487-491 http://ch.whu.edu.cn/CN/abstract/abstract5419.shtml [4] Sim M S, Kwak J H, Lee C H. Fast Shape Matching Algorithm Based on the Improved Douglas-Peucker Algorithm[J]. KIPS Transactions on Software and Data Engineering, 2016, 5(10):497-502 [5] Lee S H, Hwang W J, Jung J J, et al. Vector Map Data Compression Using Polyline Feature[J]. IEICE Transactions on Fundamentals of Electronics Communications & Computer Sciences, 2014, 97(7):1595-1604 http://adsabs.harvard.edu/abs/2014ieitf..97.1595l [6] Chand A K B, Vijender N. Positive Blending Hermite Rational Cubic Spline Fractal Interpolation Surfaces[J]. Calcolo, 2015, 52(1):1-24 [7] Gendron M L, Lohrenz M C. Vector Map Data Compression with Wavelets[J]. Journal of Navigation, 2000, 53(3):437-449 [8] Huang W, Yang J, Yue Y, et al. Vector Data Compression of Frequency Domain Based on Tolerance of Average Error[J]. Journal of Geo-information Science, 2015, 17(8):883-888 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxxkx201508001 [9] Senapati R K, Pati U C, Mahapatra K K. A Low Complexity Orthogonal 8×8 Transform Matrix for Fast Image Compression[C]. 2011 Annual IEEE India Conference, Hyderabad, India, 2011 [10] Im D Y, Jang B J, Lee S H, et al. Hybrid Polyline Simplification for GIS Vector Map Data Compression[J]. Journal of Multimedia Society, 2013, 16(4):418-429 [11] Chen M, Wen Y, Yue S. A Progressive Transmi-ssion Strategy for GIS Vector Data Under the Precondition of Pixel Losslessness[J]. Arabian Journal of Geosciences, 2015, 8(6):3461-3475 [12] 廖明生, 吴华意, 李德仁.基于DCT变换的GIS矢量数据压缩技术研究[J].武汉大学学报·信息科学版, 2007, 32(12):1123-1126 http://ch.whu.edu.cn/CN/abstract/abstract2060.shtml Liao Mingsheng, Wu Huayi, Li Deren. DCT-Based GIS Vector Data Compression[J]. Geomatics and Information Science of Wuhan University, 2007, 32(12):1123-1126 http://ch.whu.edu.cn/CN/abstract/abstract2060.shtml [13] 李金凤, 高巍.基于DCT变换矢量数据压缩[J].计算机应用与软件, 2010, 27(11):105-107 Li Jinfeng, Gao Wei. DCT-Based Vector Data Compression[J]. Computer Applications and Software, 2010, 27(11):105-107 [14] Silveira T L T D, Bayer F M, Cintra R J, et al. An Orthogonal 16-Point Approximate DCT for Image and Video Compression[J]. Multidimensional Systems & Signal Processing, 2016, 27(1):1-18 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Arxiv000001331052 [15] Puchala D, Stokfiszewski K. Low-Complexity Approximation of 8-Point DCT for Image Compression[J]. Journal of Computer Science, 2012, 20(2):107-117 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC0214879892 [16] Zhan X, Zhang R, Yin D, et al. SAR Image Compression Using Multiscale Dictionary Learning and Sparse Representation[J]. IEEE Geoscience & Remote Sensing Letters, 2013, 10(5):1090-1094 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0229525287/ [17] Baig M Y, Lai K, Punchihewa A. Compressed Sensing-Based Distributed Image Compression[J]. Applied Sciences, 2014(4):128-147 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0230673221/ [18] Gray R M, Cosman P C, Oehler K L. Neural Network Implementation of Adaptive Vector Quantization for Image Compression[J]. Global Journal of Computer Science & Technology, 2014, 59(4):91-96