[1] Dong Laigen, Shan Jie. A Comprehensive Review of Earthquake-Induced Building Damage Detection with Remote Sensing Techniques[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 84:85-99 doi:  10.1016/j.isprsjprs.2013.06.011
[2] 李德仁, 刘立坤, 邵振峰.集成倾斜航空摄影测量和地面移动测量技术的城市环境监测[J].武汉大学学报·信息科学版, 2015, 40(4):427-435 http://ch.whu.edu.cn/CN/abstract/abstract3223.shtml

Li Deren, Liu Likun, Shao Zhenfeng. An Integration of Aerial Oblique Photogrammetry and Mobile Mapping System for Urban Geographical Conditions Monitoring[J].Geomatics and Information Science of Wuhan University, 2015, 40(4):427-435 http://ch.whu.edu.cn/CN/abstract/abstract3223.shtml
[3] Li Manchun, Cheng Liang, Gong Jianya, et al. Post-earthquake Assessment of Building Damage Degree Using LIDAR data and Imagery[J]. Science in China Series E:Technological Sciences, 2008, 52:133-143 doi:  10.1007/s11431-008-6014-1
[4] Sui Haigang, Tu Jihui, Song Zhina, et al. A Novel 3D Building Damage Detection Method Using Multiple Overlapping UAV Images[C]. ISPRS Technical Commission VII Symposium, Istanbul, Turkey, 2014 http://adsabs.harvard.edu/abs/2014ISPAr.XL7..173S
[5] 王春瑶, 陈俊周, 李炜.超像素分割算法研究综述[J].计算机应用研究, 2014, 31(1):6-12 http://www.docin.com/p-1256058869.html

Wang Chunyao, Chen Junzhou, Li Wei. Review on Superpixel Segmentation Algorithms[J].Application Research of Computers, 2014, 31(1):6-12 http://www.docin.com/p-1256058869.html
[6] Achanta R, Shaji A, Smith K, et al.SLIC Superpixels Compared to State-of-the-Art Superpixel Methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11):2274-2282 doi:  10.1109/TPAMI.2012.120
[7] Vincent L, Soille P. Watersheds in Digital Spaces:an Efficient Algorithm Based on Immersion Simulations[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13(6):583-598 doi:  10.1109/34.87344
[8] Shi Jianbo, Malik J. Normalized Cuts and Image Segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8):888-905 doi:  10.1109/34.868688
[9] Comaniciu D, Meer P. Mean Shift:A Robust Approach Toward Feature Analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5):603-619 doi:  10.1109/34.1000236
[10] Vedaldi A, Soatto S. Quick Shift and Kernel Methods for Mode Seeking[C]. International Conference on Computer Vision, Marseille, France, 2008 http://www.springerlink.com/content/5m8541124846p532
[11] Levinshtein A, Stere A, Kutulakos K N, et al.Turbopixels:Fast Superpixels Using Geometric Flows[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(12):2290-2297 doi:  10.1109/TPAMI.2009.96
[12] Lodhi H, Saunders C, Shawe-Taylor J, et al. Text Classification Using String Kernels[J]. The Journal of Machine Learning Research, 2002, 41(2):419-444 https://pure.royalholloway.ac.uk/portal/en/publications/text-classification-using-string-kernels(0982bbad-9b6f-4bcf-9524-d42add0f689b)/export.html
[13] Sivic J, Zisserman A. Video Google: A Text Retrieval Approach to Object Matching in Videos[C]. International Conference on Computer Vision, Nice, France, 2003 http://ci.nii.ac.jp/naid/10027924173
[14] Jégou H, Douze M, Schmid C. Packing Bag-of-Features[C]. International Conference on Computer Vision, Kyoto, Japan, 2009
[15] Bay H, Tuytelaars T, Gool L V. Surf: Speeded Up Robust Features[C]. International Conference on Computer Vision, Marseille, France, 2008
[16] Liu C, Wechsler H. Gabor Feature Based Classification Using the Enhanced Fisher Linear Discriminant Model for Face Recognition[C]. International Conference on Image Processing, Marseille, France, 2002 http://www.ncbi.nlm.nih.gov/pubmed/18244647?dopt=AbstractPlus