[1] Wong S C, Li X D, Zhang G, et al. Heavy Metals in Agricultural Soils of the Pearl River Delta, South China[J]. Environmental Pollution, 2002, 119(1): 33-44 doi:  10.1016/S0269-7491(01)00325-6
[2] Gmochowska W, Pietranik A, Tyszka R, et al. Sources of Pollution and Distribution of Pb, Cd and Hg in Wrocław Soils: Insight from Chemical and Pb Isotope Composition[J]. Geochemistry, 2019, 79(3): 434-445 doi:  10.1016/j.chemer.2019.07.002
[3] Khosravi V, Doulati Ardejani F, Yousefi S, et al. Monitoring Soil Lead and Zinc Contents via Combination of Spectroscopy with Extreme Learning Machine and Other Data Mining Methods[J]. Geoderma, 2018, 318: 29-41 doi:  10.1016/j.geoderma.2017.12.025
[4] 彭小婷, 高文秀, 王俊杰. 基于包络线去除和偏最小二乘的土壤参数光谱反演[J]. 武汉大学学报·信息科学版, 2014, 39(7): 862-866 http://ch.whu.edu.cn/article/id/3034

Peng Xiaoting, Gao Wenxiu, Wang Junjie. Inversion of Soil Parameters from Hyperspectra Based on Continuum Removal and Partial Least Squares Regression[J]. Geomatics and Information Science of Wuhan University, 2014, 39(7): 862-866 http://ch.whu.edu.cn/article/id/3034
[5] Guerrero C, Zornoza R, Gómez I, et al. Spiking of NIR Regional Models Using Samples from Target Sites: Effect of Model Size on Prediction Accuracy[J]. Geoderma, 2010, 158(1/2): 66-77
[6] Ge Y F, Morgan C L S, Ackerson J P. VisNIR Spectra of Dried Ground Soils Predict Properties of Soils Scanned Moist and Intact[J]. Geoderma, 2014, 221/222: 61-69 doi:  10.1016/j.geoderma.2014.01.011
[7] Zou B, Jiang X L, Feng H H, et al. Multisource Spectral-Integrated Estimation of Cadmium Concentrations in Soil Using a Direct Standardization and Spiking Algorithm[J]. Science of the Total Environment, 2020, 701, DOI:  10.1016/j.scitotenv.2019.134890
[8] Zou Bin, Jiang Xiaolu, Feng Huihui, et al. Multisource Spectral-Integrated Estimation of Cadmium Concentrations Insoil Using a Direct Standardization and Spiking Algorithm[J]. Science of the Total Environment, 2020, 701: 134890 doi:  10.1016/j.scitotenv.2019.134890
[9] 陈元鹏, 张世文, 罗明, 等. 基于高光谱反演的复垦区土壤重金属含量经验模型优选[J]. 农业机械学报, 2019, 50(1): 170-179 https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX201901018.htm

Chen Yuanpeng, Zhang Shiwen, Luo Ming, et al. Empirical Model Optimization of Hyperspectral Inversion of Heavy Metal Content in Reclamation Area[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(1): 170-179 https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX201901018.htm
[10] Rathod P H, Rossiter D G, Noomen M F, et al. Proximal Spectral Sensing to Monitor Phytoremediation of Metal-Contaminated Soils[J]. International Journal of Phytoremediation, 2013, 15(5): 405-426 doi:  10.1080/15226514.2012.702805
[11] Wu Y Z, Chen J, Ji J F, et al. A Mechanism Study of Reflectance Spectroscopy for Investigating Heavy Metals in Soils[J]. Soil Science Society of America Journal, 2007, 71(3): 918-926 doi:  10.2136/sssaj2006.0285
[12] Malley D F, Williams P C. Use of Near-Infrared Reflectance Spectroscopy in Prediction of Heavy Metals in Freshwater Sediment by Their Association with Organic Matter[J]. Environmental Science & Technology, 1997, 31(12): 3461-3467
[13] Sun W C, Zhang X, Sun X J, et al. Predicting Nickel Concentration in Soil Using Reflectance Spectroscopy Associated with Organic Matter and Clay Miner‍als[J]. Geoderma, 2018, 327: 25-35 doi:  10.1016/j.geoderma.2018.04.019
[14] Zhang X, Sun W C, Cen Y, et al. Predicting Cadmium Concentration in Soils Using Laboratory and Field Reflectance Spectroscopy[J]. Science of the Total Environment, 2019, 650: 321-334 doi:  10.1016/j.scitotenv.2018.08.442
[15] Kooistra L, Salas E A L, Clevers J G P W, et al. Exploring Field Vegetation Reflectance as an Indicator of Soil Contamination in River Floodplains[J]. Environmental Pollution, 2004, 127(2): 281-290 doi:  10.1016/S0269-7491(03)00266-5
[16] 葛云思. 土壤中铁氧化物对铅吸附特性的影响研究[D]. 上海: 华东师范大学, 2016

Ge Yunsi. Study on the Influence of Iron Oxides on the Adsorption Characteristics of Pb in Soils[D]. Shanghai: East China Normal University, 2016
[17] Galvão L S, Vitorello Í. Variability of Laboratory Measured Soil Lines of Soils from Southeastern Brazil[J]. Remote Sensing of Environment, 1998, 63(2): 166-181 doi:  10.1016/S0034-4257(97)00135-1
[18] 徐彬彬, 季耿善, 朱永豪. 中国陆地背景和土壤光谱反射特性的地理分区的初步研究[J]. 环境遥感, 1991(2): 142-151 https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB199102008.htm

Xu Binbin, Ji Gengshan, Zhu Yonghao. A Preliminary Research of Geographic Regionalization of China Land Background and Spectral Reflectance Characteristicsof Soil[J]. National Remote Sensing Bulletin, 1991(2): 142-151 https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB199102008.htm
[19] Ji W, Viscarra R R A, Shi Z. Accounting for the Effects of Water and the Environment on Proximally Sensed Vis-NIR Soil Spectra and Their Calibrations[J]. European Journal of Soil Science, 2015, 66(3): 555-565 doi:  10.1111/ejss.12239
[20] 邹滨, 涂宇龙, 姜晓璐, 等. 土壤Cd含量实验室与野外DS光谱联合反演[J]. 光谱学与光谱分析, 2019, 39(10): 3223-3231 https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201910046.htm

Zou Bin, Tu Yulong, Jiang Xiaolu, et al. Estimation of Cd Content in Soil Using Combined Laboratory and Field DS Spectroscopy[J]. Spectroscopy and Spectral Analysis, 2019, 39(10): 3223-3231 https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201910046.htm
[21] Leardi R, Lupiáñez G A. Genetic Algorithms Applied to Feature Selection in PLS Regression: How and When to Use Them[J]. Chemometrics and Intelligent Laboratory Systems, 1998, 41(2): 195-207 doi:  10.1016/S0169-7439(98)00051-3
[22] Vohland M, Besold J, Hill J, et al. Comparing Different Multivariate Calibration Methods for the Determination of Soil Organic Carbon Pools with Visible to near Infrared Spectroscopy[J]. Geoderma, 2011, 166(1): 198-205 doi:  10.1016/j.geoderma.2011.08.001
[23] Wang J J, Cui L J, Gao W X, et al. Prediction of Low Heavy Metal Concentrations in Agricultural Soils Using Visible and Near-Infrared Reflectance Spectroscopy[J]. Geoderma, 2014, 216, DOI:  10.1016/j.geoderma.2013.10.024
[24] Saeys W, Mouazen A M, Ramon H. Potential for Onsite and Online Analysis of Pig Manure Using Visible and near Infrared Reflectance Spectroscopy[J]. Biosystems Engineering, 2005, 91(4): 393-402 doi:  10.1016/j.biosystemseng.2005.05.001