[1] Aptoula E. Remote Sensing Image Retrieval with Global Morphological Texture Descriptors[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5):3023-3034 doi:  10.1109/TGRS.2013.2268736
[2] Bretschneider T, Cavet R, Kao O. Retrieval of Remotely Sensed Imagery Using Spectral Information Content[C]. The 22nd IEEE International Conference of Geoscience and Remote Sensing Symposium, Toronto, Canada, 2002 http://ieeexplore.ieee.org/xpl/abstractKeywords.jsp?tp=&arnumber=1026510
[3] Scott G, Klaric M, Davis C, et al. Entropy-Balanced Bitmap Tree for Shape-based Object Retrieval from Large-Scale Satellite Imagery Databases[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(5):1603-1616 doi:  10.1109/TGRS.2010.2088404
[4] Demir B, Bruzzone L. A Novel Active Learning Method in Relevance Feedback for Content-based Remote Sensing Image Retrieval[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(9):2323-2334 https://www.researchgate.net/publication/271426283_An_effective_active_learning_method_for_interactive_content-based_retrieval_in_remote_sensing_images
[5] Liu T, Zhang L, Li P, et al. Remotely Sensed Image Retrieval Based on Region-Level Semantic Mining[J].EURASIP Journal on Image and Video Preocessing, 2012, 4(1):1-11 doi:  10.1186/1687-5281-2012-4
[6] Yang Y, Newsam S. Geographic Image Retrieval Using Local Invariant Features[J].IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(2):818-832 doi:  10.1109/TGRS.2012.2205158
[7] 杨进, 刘建波, 戴芹.一种改进包模型的遥感图像检索方法[J].武汉大学学报·信息科学版, 2014, 39(9):1109-1113 http://ch.whu.edu.cn/CN/abstract/abstract3080.shtml

Yang Jin, Liu Jianbo, Dai Qin. An Improved Remote Sensing Image Retrieval Method Based on Bag of Word Framework[J]. Geomatics and Information Science of Wuhan University, 2014, 39(9):1109-1113 http://ch.whu.edu.cn/CN/abstract/abstract3080.shtml
[8] Krizhevsky A, Sutskever I, Hinton G E. ImageNet Classification with Deep Convolutional Neural Networks[C]. The 26th Conference on Neural Information Processing Systems, Nevada, US, 2012 http://dl.acm.org/citation.cfm?id=3065386
[9] Zeiler M D, Fergus R. Visualizing and Understanding Convolutional Networks[C]. The 13th European Conference on Computer Vision, Zurich, Switzerland, 2014
[10] Simonyan K, Zisserman A. Very Deep Convolutional Networks for Large-Scale Image Recognition[C]. The 3rd International Conference on Learning Representations, San Diego, Canada, 2015 http://arxiv.org/abs/1409.1556
[11] Donahue J, Jia Y, Vinyals O, et al. Decaf: A Deep Convolutional Activation Feature for Generic Visual Recognition[C]. The 31st International Conference on Machine Learning, Beijing, China, 2014 http://dl.acm.org/citation.cfm?id=3044879
[12] Oquab M, Bottou L, Laptev I, et al. Learning and Transferring Mid-Level Image Representations using Convolutional Neural Networks[C]. The 27th IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6909618
[13] Chatfield K, Simonyan K, Vedaldi A, et al. Return of the Devil in the Details: Delving Deep into Convolutional Networks[C]. The 25th British Machine Vision Conference, Nottingham, England, 2014 http://www.oalib.com/paper/4045769
[14] Penatti O A B, Nogueira K, Santos J A D. Do Deep Features Generalize from Everyday Objects to Remote Sensing and Aerial Scenes Domains?[C]. The IEEE Conference on Computer Vision and Pattern Recognition Workshops, Boston, MA, 2015 doi:  10.1109/CVPRW.2015.7301382
[15] Hu F, Xia G S, Hu J, et al.Transferring Deep Convolutional Neural Networks for the Scene Classification of High-Resolution Remote Sensing Imagery[J]. Remote Sensing. 2015, 7(11):14680-14707 doi:  10.3390/rs71114680
[16] Ng J, Yang F, Davis L. Exploiting Local Features from Deep Networks for Image[C]. The IEEE Conference on Computer Vision and Pattern Recognition Workshops, Boston, MA, 2015 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=7301272
[17] Babenko A, Slesarev A, Chigorin A, et al. Neural Codes for Image Retrieval[C]. The 13th European Conference on Computer Vision, Zurich, Switzerland, 2014
[18] Vedaldi A, Lenc K. MatConvNet: Convolutional Neural Networks for MATLAB[C]. The 23rd ACM International Conference on Multimedia, Brisbane, Austrialia, 2015 doi:  10.1145/2733373.2807412
[19] Yang Y, Newsam S. Bag-of-Visual-Words and Spatial Extensions for Land-Use Classification[C]. The 18th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, San Jose, US, 2010 http://dl.acm.org/citation.cfm?id=1869829
[20] Xia G S, Yang W, Delon J, et al. Structrual High-Resolution Satellite Image Indexing. In Processings of the ISPRS, TC Ⅶ Symposium Part A: 100 Years ISPRS-Advancing Remote Sensing Science[C]. ISPRS TC Ⅶ Symposium-100 Years ISPRS 38, Vienna, Austria, 2010