[1] 李德仁, 童庆禧, 李荣兴, 等.高分辨率对地观测的若干前沿科学问题[J].中国科学 (地球科学), 2012, 42(6):805-813 http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201206004.htm

Li Deren, Tong Qinxi, Li Rongxing, et al. Current Issuesin High-resolution Earth Observation Technology[J]. Sci China (Earth Sci), 2012, 42(6):805-813 http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201206004.htm
[2] Chang C I.Hyperspectral Data Processing: Algorithm Design and Analysis[M].New York: John Wiley and Sons Inc, 2013
[3] Zhang Liangpei, Huang Xin. Advanced Processing Techniques for Remotely Sensed Imagery[J]. Journal of Remote Sensing, 2009, 13(4):559-569 https://www.researchgate.net/publication/268304391_Advanced_processing_techniques_for_remotely_sensed_imagery
[4] Rosin P L. Robust Pixel Unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(9): 1 978-1 983 doi:  10.1109/36.951088
[5] 普晗晔, 王斌, 张立明.基于单形体几何的高光谱遥感图像解混算法[J].中国科学 (信息科学), 2012, 42(8): 1 019-1 033 http://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201208010.htm

Pu Hanye, Wang Bin, Zhang Liming. Simplex Geometry-based Abundance Estimation Algorithm for Hyperspectral Unmixing[J]. Sci China (Info Sci), 2012, 42(8): 1 019-1 033 http://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201208010.htm
[6] Wirasakti S, Zein R A, Mafazi F. Comparative Study of Land Cover Linear Spectral Mixture Analysis (LSMA) Model on Multispectral and Hyperspectral Imagery[C].The 34th Asian Conference on Remote Sensing, Bali, Indonesia, 2013
[7] 赵春晖, 肖健钰.一种利用互信息加权的最小二乘法丰度反演算法[J].沈阳大学学报 (自然科学), 2014, 26(1):45-49 http://www.cnki.com.cn/Article/CJFDTOTAL-SYDA201401012.htm

Zhao Chunhui, Xiao Jianyu. An Abundance Inversion Algorithm Based on Mutual Information Weighted Least Square Error[J]. Journal of Shenyang University Natural Science, 2014, 26(1):45-49 http://www.cnki.com.cn/Article/CJFDTOTAL-SYDA201401012.htm
[8] 唐晓燕, 高昆, 倪国强.高光谱图像非线性解混方法的研究进展[J].遥感技术与应用, 2013, 28(4):731-738 http://www.cnki.com.cn/Article/CJFDTOTAL-YGJS201304028.htm

Tang Xiaoyan, Gao Kun, Ni Guoqiang. Nonlinear Spectral Unmixing of Hyperspectral Images[J].Remote Sensing Technology and Application, 2013, 28(4):731-738 http://www.cnki.com.cn/Article/CJFDTOTAL-YGJS201304028.htm
[9] Camps-Valls G, Bruzzone L. Kernel Methods for Remote Sensing Data Analysis[M]. New York: John Wiley & Sons Ltd, 2009
[10] Hosseini S A, Ghassemian H. A New Fast Algorithm for Multiclass Hyperspectral Image Classification with SVM[J]. International Journal of Remote Sensing, 2011, 32(23): 8 657-8 683 doi:  10.1080/01431161.2010.547882
[11] Broadwater J, Banerjee A. Mapping Intimate Mixtures Using an Adaptive Kernel-based Technique[C]. The 3rd Workshop on Hyperspectral Signal Processing: Evolution in Remote Sensing, Wuhan, 2011
[12] 刘婷婷, 林珲, 张良培, 等.利用SVM相关反馈和语义挖掘的遥感影像检索[J].武汉大学学报·信息科学版, 2012, 37(4):415-418 http://ch.whu.edu.cn/CN/abstract/abstract179.shtml

Liu Tingting, Lin Hui, Zhang Liangpei, et al. SVM-relavance-feedback and Semantic-extraction-based RS Image Retrieval[J].Geomatics and Information Science of Wuhan University, 2012, 37(4):415-418 http://ch.whu.edu.cn/CN/abstract/abstract179.shtml
[13] 王晓飞, 张钧萍, 张晔.高光谱图像混合像元分解算法[J].红外与毫米波学报, 2010, 29(3):210-216 doi:  10.3724/SP.J.1010.2010.00210

Wang Xiaofei, Zhang Junping, Zhang Ye. Unmixing Algorithm of Hyperspectral Images[J]. Journal of Infrared Millim Waves, 2010, 29(3):210-216 doi:  10.3724/SP.J.1010.2010.00210
[14] 谭熊, 余旭初, 张鹏强, 等.基于多核支持向量机的高光谱影像非线性混合像元分解[J].光学精密工程, 2014, 22(7):1 912-1 920 doi:  10.3788/OPE.

Tan Xiong, Yu Huchu, Zhang Liangpei, et al. Nonlinear Mixed Pixel Decomposition of Hyperspectral Imagery Based on Kernel SVM[J]. Optics and Precision Engineering, 2014, 22(7):1 912-1 920 doi:  10.3788/OPE.
[15] Kwon H, Nasrabadi N M. Kernel Orthogonal Subspace Projection for Hyperspectral Signal Classification[J]. IEEE Geoscience and Remote Sensing, 2005, 43(12):2 952-2 962 doi:  10.1109/TGRS.2005.857904
[16] Liu K H, Wong E, Du E Y, et al. Kernel-based Linear Spectral Mixture Analysis[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(1):129-133 doi:  10.1109/LGRS.2011.2162088
[17] 王挺, 杜博, 张良培.顾及局域信息的核化正交子空间投影目标探测方法[J].武汉大学学报·信息科学版, 2013, 38(2):200-204 http://www.cnki.com.cn/Article/CJFDTotal-WHCH201302018.htm

Wang Ting, Du Bo, Zhang Liangpei. A Local Information-based Kernelized OSP Method for Target Detection[J]. Geomatics and Information Science of Wuhan University, 2013, 38(2):200-204 http://www.cnki.com.cn/Article/CJFDTotal-WHCH201302018.htm
[18] 赵春晖, 尤佳, 李晓慧.基于自适应核方法的正交子空间投影异常检测算法[J].黑龙江大学 (自然科学学报), 2012, 29(2):254-259 http://www.cnki.com.cn/Article/CJFDTOTAL-HLDZ201202025.htm

Zhao Chunhui, You Jia, Li Xiaohui. An Orthogonal Subspace Projection Anomaly Detection Algorithm Based on Adaptive Kernel Method[J]. Journal of Natural Science of Heilongjiang University, 2012, 29(2):254-259 http://www.cnki.com.cn/Article/CJFDTOTAL-HLDZ201202025.htm
[19] Bajorski P. Analytical Comparison of the Matched Filter and Orthogonal Subspace Projection Detectors for Hyperspectral Images [J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(7): 2 394-2 402 doi:  10.1109/TGRS.2007.896544
[20] Capobianco L, Garzelli A, Camps-Valls G. Target Detection with Semisupervised Kernel Orthogonal Subspace Projection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(11): 3 822-3 833 doi:  10.1109/TGRS.2009.2020910
[21] Fauvel M, Chanussot J, Benediktsson J A. Kernel Principal Component Analysis for the Classification of Hyperspectral Remote Sensing Data over Urban Areas[J].EURASIP Journal on Advances in Signal Processing, 2009, 5(1):1-14 doi:  10.1155/2009/783194
[22] 林娜, 杨武年, 王斌.高光谱遥感影像核最小噪声分离变换特征提取[J].武汉大学学报·信息科学版, 2013, 38(8):988-992 http://ch.whu.edu.cn/CN/Y2013/V38/I8/988

Lin Na, Yang Wunian, Wang Bin. Hyperspectral Image Feature Extractionvia Kernel Minimum Noise Fraction Transform[J].Geomatics and Information Science of Wuhan University, 2013, 38(8):988-992 http://ch.whu.edu.cn/CN/Y2013/V38/I8/988
[23] Molero J M, Garzón E M, García I. Anomaly Detection Based on a Parallel Kernel RX Algorithm for Multicore Platforms[J]. Journal of Applied Remote Sensing, 2012, 6(1):3 542-3 552 https://www.researchgate.net/publication/279411535_Anomaly_detection_based_on_a_parallel_kernel_RX_algorithm_for_multicore_platforms
[24] Broadwater J, Chellappa R, Banerjee A, et al. Kernel Fully Constrained Least Squares Abundance Estimates[C].Geoscience and Remote Sensing Symposium, IGARSS, United States, 2007
[25] Swayze G A, Clark R N, Goetz A F H, et al. Mapping Advanced Argillic Alteration at Cuprite, Nevada, Using Imaging Spectroscopy[J]. Economic Geology, 2014, 109(5):1 179-1 221 doi:  10.2113/econgeo.109.5.1179
[26] Nevada. Ground-truthing AVIRIS Mineral Mapping at Cuprite[OL]. http://speclab.cr.usgs.gov,2015