[1] Shu Ning. On the Texture of Multi-spectral and Super-dimensional Images[J]. Geomatics and Information Science of Wuhan University, 2004,29(4):292-295(舒宁.关于多光谱和高光谱影像的纹理问题[J].武汉大学学报·信息科学版,2004,29(4):292-295)
[2] Yu Q, Gong P, Clinton N,et al. Object-based Detailed Vegetation Classification with Airborne High Spatial Resolution Remote Sensing Imagery[J]. Photogrammetric Engineering and Remote Sensing, 2006,72(7):799-811
[3] Shackelford A K, Davis C H. A Combined Fuzzy Pixel-based and Object-based Approach for Classification of High-resolution Multispectral Data over Urban Areas[J]. Geoscience and Remote Sensing, IEEE Transactions on, 2003,41(10):2354-2363
[4] Zhang Qian, Huang Xin, Zhang Liangpei. Multiscale Image Segmentation and Classification with Supervised ECHO of High Spatial Resolution Remotely Sensed Imagery[J]. Geomatics and Information Science of Wuhan University, 2011, 36(1):117-121(张倩, 黄昕, 张良培. 多尺度同质区域提取的高分辨率遥感影像分类研究[J]. 武汉大学学报·信息科学版, 2011, 36(1):117-121)
[5] Yang Bo, Wang Mi. On-orbit Geometric Calibration Method of ZY-102C Panchromatic Camera[J]. Journal of Remote Sensing, 2013,17(5):1175-1190
[6] Liu Gang, Xu Hongjiang, Ma Haitao, et al. Land Use Change Information Extraction Methods and Application of Land Resources High Resolution System Based on Resource 02C Satellite[J].Geomatics and Spatial Information Technology, 2013,36(4):65-68(刘刚,许宏健,马海涛,等.基于资源一号02C卫星数据的土地资源高分系统变化信息提取方法应用研究[J].测绘与空间地理信息,2013,36(4):65-68)
[7] Wen Xiongfei, Chen Beiqing, Shen Shaohong, et al. Image Qualitu Evaluation for ZY-002C Satellite P/MS Sensor and the Potential of Its Application in Water Conservancy[J]. Journal of Yangtze River Scientific Research Institue, 2012,29(10):118-121(文雄飞,陈蓓青,申邵洪,等.资源一号02C卫星P/MS传感器数据质量评价及其在水利行业中的应用潜力分析[J].长江科学院院报,2012,29(10):118-121)
[8] Moran E F. Land Cover Classification in a Complex Urban-rural Landscape with Quickbird Imagery[J]. Photogrammetric Engineering and Remote Sensing, 2010,76(10):1159-1168
[9] James R C. Spectral and Texture Classification of Single and Multiple Band Digital Images[J]. Computers and Geosciences, 1996,22(8):849-865
[10] Su W, Li J, Chen Y, et al. Textural and Local Spatial Statistics for the Object Oriented Classification of Urban Areas Using High Resolution Imagery[J]. International Journal of Remote Sensing, 2008,29(11):3105-3117
[11] Tao Yang.Texture Analysis Based Research on Terrain Morphology Characteristies[D]. Nanjing:Nanjing Normal University, 2011(陶旸. 基于纹理分析方法的DEM地形特征研究[D]. 南京:南京师范大学,2011)
[12] Hu Wenying, Jiao Yuanmei. The Study Process of Texture Feature Extraction for Remote Sensing Image[J]. Yunnan Geographic Environment Research, 2007,19(3):66-71,76(胡文英,角媛梅.遥感图像纹理信息提取方法综述[J].云南地理环境研究,2007,19(3):66-71,76)
[13] Li Peijun, Li Zhengxiao. Comparison of Three Geostatistical Texture Measures for Remotely Sensed Data Classification[J]. Geography and Geo-Information Science, 2003,19(4):89-92(李培军,李争晓. 三种地统计学图像纹理用于遥感图像分类的比较[J].地理与地理信息科学,2003,19(4):89-92)
[14] Chica-Olmo M, Arbarca-Hernandez F. ComputingGeostatistical Image Texture for Remotely Sensed Data Classification[J]. Computers and Geosciences, 2000,26(4):373-383
[15] Zhang Jinshui, He Chunyang, Pan Yaozhong, et al. The High Spatial Resolution RS Image Classification Based on SVM Method with the Multi-source Data[J].Journal of Remote Sensing, 2006,10(1):49-57(张锦水,何春阳,潘耀忠,等.基于SVM的多源信息复合的高空间分辨率遥感数据分类研究[J].遥感学报, 2006,10(1):49-57)
[16] Wu Zhaocong, Ouyang Qundong, Hu Zhongwen. Polarimetric SAR Image Classification Using Watershed Transformation and Support Vector Machine[J]. Geomatics and Information Science of Wuhan University, 2012, 37(1):7-10(巫兆聪, 欧阳群东, 胡忠文. 应用分水岭变换与支持向量机的极化SAR图像分类[J]. 武汉大学学报·信息科学版, 2012, 37(1):7-10)
[17] Melgani F, Bruzzone L. Classification of Hyperspectral Remote Sensing Images with Support Vector Machines[J]. Geoscience and Remote Sensing, IEEE Transactions on, 2004, 42(8):1778-1790
[18] Huang C, Davis L S, Townshend J R G. An Assessment of Support Vector Machines for Land Cover Classification[J]. International Journal of Remote Sensing, 2002,23(4):725-749
[19] Curran P J. The Semivariogram in Remote Sensing:An Introduction[J]. Remote Sensing of Environment, 1988,24(3):493-507
[20] Wu S, Xu B, Wang L. Urban Land-use Classification Using Variogram-based Analysis with an Aerial Photograph[J]. Photogrammetric Engineering and Remote Sensing, 2006,72(7):813-822
[21] Dell'Acqua F, Gamba P, Trianni G. Semi-automatic Choice of Scale-dependent Features for Satellite SAR Image Classification[J]. Pattern Recognition Letters, 2006, 27(4):244-251
[22] Li Xiaotao,Pan Shibing,Song Xiaoning. Remote Sensing Image Classification Method Based on Geostatistics Texture[J]. Geography and Geo-Information Science, 2009,25(2):30-33(李小涛,潘世兵,宋小宁.基于地质统计学纹理特征的遥感影像分类方法研究[J].地理与地理信息科学,2009,25(2):30-33)
[23] Soh L K, Tsatsoulis C. Texture Analysis of SAR Sea Ice Imagery Using Gray Level Co-occurrence Matrices[J]. IEEE Transactions on Geoscience and Remote Sensing,1999,37(2):780-795
[24] Srinivasan G N, Shobha G. Statistical Texture Analysis[J]. Proceedings of World Academy of Science, Engineering and Technology, 2008, 36:1264-1269
[25] He Chunyang, Cao Xin, Shi Peijun, et al. Incorporation of Texture and Structure Information for Urban Building Detection by Using Landsat 7 ETM+ Panchromatic Image[J]. Geomatics and Information Science of Wuhan University, 2004, 29(9):800-804(何春阳, 曹鑫, 史培军, 等. 基于Landsat7 ETM+全色数据纹理和结构信息复合的城市建筑信息提取[J]. 武汉大学学报·信息科学版, 2004, 29(9):800-804)
[26] Zhou W, Troy A, Grove M. Object-based Land Cover Classification and Change Analysis in the Baltimore Metropolitan Area Using Multitemporal High Resolution Remote Sensing Data[J]. Sensors, 2008, 8(3):1613-1636
[27] Chang C C, Lin C J. LIBSVM:a Library for Support Vector Machines[J]. ACM Transactions on Intelligent Systems and Technology, 2011,2(27):1-27
[28] Congalton R G. A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data[J]. Remote Sensing of Environment, 1991,37(1):35-46