[1] 许小可, 文成, 张光耀, 等.新冠肺炎爆发前期武汉外流人口的地理去向分布及影响[J].电子科技大学学报, 2020, 49: 1-6 https://www.cnki.com.cn/Article/CJFDTOTAL-DKDX202003002.htm

Xu Xiaoke, Wen Cheng, Zhang Guangyao, et al. The Geographical Destination Distribution and Effect of Outflow Population of Wuhan When the Outbreak of the 2019-nCoV Pneumonia[J]. Journal of University of Electronic Science and Technology of China, 2020, 49: 1-6 https://www.cnki.com.cn/Article/CJFDTOTAL-DKDX202003002.htm
[2] Merler S, Ajelli M, Fumanelli L, et al. Spatiotemporal Spread of the 2014 Outbreak of Ebola Virus Disease in Liberia and the Effectiveness of Non-pharmaceutical Interventions: A Computational Modelling Analysis[J]. The Lancet Infectious Diseases, 2015, 15(2): 204-211 doi:  10.1016/S1473-3099(14)71074-6
[3] Li Z, Yin W, Clements A, et al. Spatiotemporal Analysis of Indigenous and Imported Dengue Fever Cases in Guangdong Province, China[J]. BMC Infectious Diseases, 2012, 12(1): 132 doi:  10.1186/1471-2334-12-132
[4] Xu B, Gutierrez B, Mekaru S, et al. Epidemiological Data from the COVID-19 Outbreak, Real-Time Case Information[J]. Scientific Data, 2020, 7(1): 1-6 doi:  10.1038/s41597-019-0340-y
[5] 李德仁, 邵振峰, 于文博, 等.基于时空位置大数据的公共疫情防控服务让城市更智慧[J].武汉大学学报·信息科学版, 2020, 45(4): 475-487, 556 doi:  10.13203/j.whugis20200145

Li Deren, Shao Zhenfeng, Yu Wenbo, et al. Public Epidemic Prevention and Control Services Based on Big Data of Spatiotemporal Location Make Cities More Smart[J]. Geomatics and Information Science of Wuhan University, 2020, 45(4): 475-487, 556 doi:  10.13203/j.whugis20200145
[6] 北京极海纵横信息技术有限公司. gh-2019-nCoV-community-data[OL]. https://gitee.com/geohey/gh-2019-nCoV-community-data, 2020

GeoHey. gh-2019-nCoV-community-data[OL]. https://gitee.com/geohey/gh-2019-nCoV-community-data, 2020
[7] 北京航空航天大学大数据科学与脑机智能高精尖创新中心.新冠疫情确诊患者轨迹结构化数据[OL]. https://github.com/BDBC-KG-NLP/COVID-19-tracker, 2020

Beijing Advanced Innovation Center for Big Data and Brain Computing, Beihang University. COVID-19-tracker[OL]. https://github.com/BDBC-KG-NLP/COVID-19-tracker, 2020
[8] Young T, Hazarika D, Poria S, et al. Recent Trends in Deep Learning Based Natural Language Processing[J]. IEEE Computational Intelligence Magazine, 2018, 13(3): 55-75 doi:  10.1109/MCI.2018.2840738
[9] Corvey W J, Vieweg S, Rood T, et al. Twitter in Mass Emergency: What NLP Can Contribute[C]. NAACL HLT 2010 Workshop on Computational Linguistics in a World of Social Media, Los Angeles, California, USA, 2010
[10] Qin T, Xiao R, Fang L, et al. An Efficient Location Extraction Algorithm by Leveraging Web Contextual Information[C]. The 18th ACM SIGSPATIAL International Symposium on Advances in Geographic Information Systems, San Jose, CA, USA, 2010
[11] Neubig G, Matsubayashi Y, Hagiwara M, et al. Safety Information Mining—What Can NLP Do in a Disaster[C]. The 5th International Joint Conference on Natural Language Processing, Chiang Mai, Thailand, 2011
[12] Dhavase N, Bagade A M. Location Identification for Crime & Disaster Events by Geoparsing Twitter[C]. International Conference for Convergence for Technology, Pune, India, 2014
[13] Sit M A, Koylu C, Demir I. Identifying Disaster-Related Tweets and Their Semantic, Spatial and Temporal Context Using Deep Learning, Natural Language Processing and Spatial Analysis: A Case Study of Hurricane Irma[J]. International Journal of Digital Earth, 2019, 12(11): 1205-1229 doi:  10.1080/17538947.2018.1563219
[14] Wang M. Following the Spread of Zika with Social Media: The Potential of Using Twitter to Track Epidemic Disease[D]. Montreal, Quebec, Canada: Concordia University, 2017
[15] Keller M, Freifeld C C, Brownstein J S. Automated Vocabulary Discovery for Geo-parsing Online Epidemic Intelligence[J]. BMC Bioinformatics, 2009, 10(1): 385 doi:  10.1186/1471-2105-10-385
[16] Klein A, Magge A, O'Connor K, et al. A Chronological and Geographical Analysis of Personal Reports of COVID-19 on Twitter[J]. medRxiv, 2020, DOI:  10.1101/2020.04.19.20069948
[17] Nikolajevs J, Jekabsons G. Automatic Extraction of Geographic Context from Textual Data[J]. Computational Science and Techniques, 2014, 2(1): 229-237
[18] Otter D W, Medina J R, Kalita J K. A Survey of the Usages of Deep Learning for Natural Language Processing[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, DOI:  10.1109/TNNLS.2020.2979670
[19] Gull K, Padhye S, Jain D S. A Comparative Analysis of Lexical/NLP Method with WEKA's Bayes Classifier[J]. International on Recent and Innovation Trends in Computing and Communication (IJRITCC), 2017, 5(2): 221-227
[20] 周晓光, 赵肄江, 李光强, 等.顾及信誉的众源时空数据模型[J].武汉大学学报·信息科学版, 2018, 43(1): 10-16 doi:  10.13203/j.whugis20150378

Zhou Xiaoguang, Zhao Yijiang, Li Guangqiang, et al. Crowdsourcing Spatio-Temporal Data Model Considering Reputation[J]. Geomatics and Information Science of Wuhan University, 2018, 43(1): 10-16 doi:  10.13203/j.whugis20150378
[21] Antoniou V, Skopeliti A. Measures and Indicators of VGI Quality: An Overview[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2015, Ⅱ-3/W5: 345-351
[22] 王劲峰, 徐成东.地理探测器:原理与展望[J].地理学报, 2017, 72(1): 116-134 https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201701011.htm

Wang Jinfeng, Xu Chengdong. Geodetector: Principle and Prospective[J]. Acta Geographica Sinica, 2017, 72(1): 116-134 https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201701011.htm