[1] Gao S, Liu Y, Wang Y, et al. Discovering Spatial Interaction Communities from Mobile Phone Data[J]. Transactions in GIS, 2013, 17(3): 463-481
[2] Chen Jia, Hu Bo, Zuo Xiaoqing, et al. Personal Profile Mining Baesd on Mobile Phone Location Data[J]. Geomatics and Information Science of Wuhan University, 2014, 39(6): 734-738(陈佳, 胡波, 左小清, 等. 利用手机定位数据的用户特征挖掘[J]. 武汉大学学报·信息科学版, 2014,39 (6): 734-738)
[3] Scholz R W, Lu Y. Detection of Dynamic Activity Patterns at a Collective Level from Large-volume Trajectory Data[J]. International Journal of Geographical Information Science, 2014, 28(5): 946-963
[4] Ren Huijun, Xu Tao, Li Xiang. Driving Behavior Analysis Based on Trajectory Data Collected with Vehicle-mounted GPS Receivers[J]. Geomatics and Information Science of Wuhan University, 2014, 39(6): 739-744(任慧君, 许涛, 李响. 利用车载GPS轨迹数据实现公交车驾驶安全性分析[J]. 武汉大学学报· 信息科学版, 2014, 39(6): 739-744)
[5] Huang L, Li Q, Yue Y. Activity Identification from GPS Trajectories Using Spatial Temporal Pois' Attractiveness[C]. Proceedings of the ACM Sigspatial International Workshop on Location Based Social Networks, Chicago, USA, 2010
[6] Seaborn C, Attanucci J, Wilson N H M. Using Smart Card Fare Payment Data to Analyze Multi-Modal Public Transport Journeys in London [C]. The 88th Transportation Research Board Annual Meeting, Washington D C, USA, 2009
[7] Li L, Goodchild M F, Xu B. Spatial, Temporal, and Socioeconomic Patterns in the Use of Twitter and Flickr[J]. Cartography and Geographic Information Science, 2013, 40(2): 61-77
[8] Tsou M H, Yang J A, Lusher D, et al. Mapping Social Activities and Concepts with Social Media (Twitter) and Web Search Engines (Yahoo and Bing): A Case Study in 2012 US Presidential Election[J]. Cartography and Geographic Information Science, 2013, 40(4): 337-348
[9] Signorini A, Segre A M, Polgreen P M. The Use of Twitter to Track Levels of Disease Activity and Public Concern in the US During the Influenza a H1N1 Pandemic[J]. PloS One, 2011, 6(5): e19467
[10] Achrekar H, Gandhe A, Lazarus R, et al. Predicting Flu Trends Using Twitter Data[C]. 2011 IEEE Conference on Computer Communications Workshops, Shanghai, China, 2011
[11] Ferrari L, Rosi A, Mamei M, et al. Extracting Urban Patterns from Location-Based Social Networks[C]. The 3rd ACM SIGSPATIAL International Workshop on Location-Based Social Networks, Chicago, USA, 2011
[12] Frias-Martinez V, Frias-Martinez E. Spectral Clustering for Sensing Urban Land Use Using Twitter Activity[J]. Engineering Applications of Artificial Intelligence, 2014, 35: 237-245
[13] Wu L, Zhi Y, Sui Z, et al. Intra-urban Human Mobility and Activity Transition: Evidence from Social Media Check-in Data[J]. PloS One, 2014, 9(5), doi: 10.1371/journal.pone.0097010
[14] Liu Y, Sui Z, Kang C, et al. Uncovering Patterns of Inter-Urban Trip and Spatial Interaction from Social Media Check-in Data[J]. PloS One, 2014, 9(1), doi: 10.1371/journal.pone.0086026
[15] Hanna R, Rohm A, Crittenden V L. We're all Connected: The Power of the Social Media Ecosystem[J]. Business Horizons, 2011, 54(3): 265-273
[16] Sakaki T, Okazaki M, Matsuo Y. Tweet Analysis for Real-Time Event Detection and Earthquake Reporting System Development[J]. Knowledge and Data Engineering, IEEE Transactions on, 2013, 25(4): 919-931
[17] Crooks A, Croitoru A, Stefanidis A, et al. Earthquake: Twitter as a Distributed Sensor System[J]. Transactions in GIS, 2013, 17(1): 124-147
[18] Blei D M, Ng A Y, Jordan M I. Latent Dirichlet Allocation[J]. The Journal of Machine Learning Research, 2003(3): 993-1 022
[19] Cortes C, Vapnik V. Support Vector Machine[J]. Machine Learning, 1995, 20(3): 273-297
[20] Nagel A C, Tsou M H, Spitzberg B H, et al. The Complex Relationship of Realspace Events and Messages in Cyberspace: Case Study of Influenza and Pertussis Using Tweets[J]. Journal of Medical Internet Research, 2013, 15(10),doi: 10.2196/jmir.2705
[21] Cleveland R B, Cleveland W S, McRae J E, et al. STL: A Seasonal-Trend Decomposition Procedure Based on Loess[J]. Journal of Official Statistics, 1990, 6(1): 3-73
[22] Ester M, Kriegel H P, Sander J, et al. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise[C]. Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, Portland, USA, 1996