[1] Chen C F, Yue T X, Li Y Y. A High Speed Method of SMTS[J]. Computers and Geosciences, 2012, 41:64-71.
[2] Chen C F, Fan Z M, Yue T X, et al. A Robust Estimator for The Accuracy Assessment of remote-sensing-derived DEMs[J]. International Journal of Remote Sensing, 2012, 33(8):2482-2497.
[3] Li C, Wang Q, Shi W Z, et al. Uncertainty Modelling and Analysis of Volume Calculations Based on A Regular Grid Digital Elevation Model(DEM)[J]. Computers & Geosciences, 2018, 114:117-29.
[4] Hingee K L, Caccetta P, Caccetta L. Modelling Discontinuous Terrain from DSMs Using Segment Labelling, Outlier Removal and Thin-Plate Splines[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 155:159-171.
[5] Xia S B, Chen D, Wang R S. A Breakline-Preserving Ground Interpolation Method for MLS Data[J]. Remote Sensing Letters, 2019, 10(12):1201-1210.
[6] Chen C F, Gao Y, Li Y Y. A Feature-Preserving Point Cloud Denoising Algorithm for LiDAR-derived DEM construction[J]. Survey Review, 2021, 53(377):146-157.
[7] Chen C F, Li Y Y, Zhao N, et al. Least Squares Compactly Supported Radial Basis Function for Digital Terrain Model Interpolation From Airborne LiDAR Point Clouds[J]. Remote Sensing, 2018, 10(4):587.
[8] Buhmann M D. Radial Basis Functions:Theory and Implementations[M]. Cambridge university press, 2003.
[9] Zhou K, Hou Q M, Wang R, et al. Real-Time KD-Tree Construction on Graphics Hardware[C]. ACM Transactions on Graphics (TOG). ACM, 2008, 27(5):126.
[10] Rippa S. An Algorithm for Selecting A Good Value for The Parameter c in Radial Basis Function Interpolation[J]. Advances in Computational Mathematics, 1999, 11(2):193-210.
[11] Casciola, G; Lazzaro, D; Montefusco L B, et al. Shape Preserving Surface Reconstruction Using Locally Anisotropic Radial Basis Function Interpolants[J]. Computers and Mathematics with Applications.2006, 51(8):1185-1198.
[12] Lang T, Plagemann C, Burgard W. Adaptive Non-Stationary Kernel Regression for Terrain Modeling[C]. Robotics:Science and Systems. 2007, 6.
[13] Xia S, Wang R. A Fast Edge Extraction Method for Mobile LiDAR Point Clouds[J]. IEEE Geoscience and Remote Sensing Letters. 2017, 14(8):1288-1292.
[14] Feng X G, Milanfar P. Multiscale Principal Components Analysis for Image Local Orientation estimation[C]. Conference Record of the Thirty-Sixth Asilomar Conference on Signals, Systems and Computers, 2002. IEEE. 2002, 1:478-482.
[15] Mester R, Muhlich M. Improving Motion and Orientation Estimation Using An Equilibrated Total Least Squares Approach[C]. Proceedings 2001 International Conference on Image Processing. IEEE, 2001, 2:929-932.
[16] Hengl, T. Finding The Right Pixel Size. Comput. Geosci. 2006, 32, 1283-1298.