[1] Schaffrin B, Wieser A. On Weighted Total Least-squares Adjustment for Linear Regression[J]. Journal of Geodesy, 2008, 82(7):415-421
[2] Mahboub V. On Weighted Total Least-squares for Geodetic Transformations[J].Journal of Geodesy, 2012, 86(5):359-367
[3] Amiri-Simkooei A R, Jazaeri S. Weighted Total Least Squares Formulated by Standard Least Sq-uares Theory[J]. Journal of Geodetic Science, 2012, 2(2):113-124
[4] Cui Xizhang, Yu Zongchou, Tao Benzao, et al. Generalized Surveying Adjustment (New Edition)[M].Wuhan:Wuhan University Press, 2005(崔希璋, 於宗俦, 陶本藻, 等. 广义测量平差(新版)[M]. 武汉:武汉大学出版社, 2005)
[5] Liu Zhiping, Zhang Shubi. Variance-covariance Component Estimation Method Based on Generalization Adjustment Factor[J].Geomatics and Information Science of Wuhan University, 2013, 38(8):925-929(刘志平, 张书毕. 方差-协方差分量估计的概括平差因子法[J].武汉大学学报·信息科学版, 2013, 38(8):925-929)
[6] Wang Leyang, Xu Caijun, Zhang Chaoyu. A Two-step Method to Determine Relative Weight Ratio Factors in Joint Inversion[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(1):19-24(王乐洋, 许才军, 张朝玉. 一种确定联合反演中相对权比的两步法[J].测绘学报,2012, 41(1):19-24)
[7] Amiri-simkooei A R. Application of Least Squares Variance Component Estimation to Errors-in-Variables Models[J]. Journal of Geodesy, 2013, 87(10-12):935-944
[8] Xu P, Liu J. Variance Components in Errors-in-Variables Models:Estimability, Stability and Bias Analysis[J]. Journal of Geodesy, 2014, 88(8):719-734
[9] Neri F, Saitta G, Chiofalo S. An Accurate and Straightforward Approach to Line Regression Analysis of Error-affected Experimental Data[J]. Journal of Physics E:Scientific Instruments, 1989, 22(4):215-217
[10] Wang Leyang. Research on Theory and Application of Total Least Squares in Geodetic Inversion[D]. Wuhan:Wuhan University, 2011(王乐洋. 基于总体最小二乘的大地测量反演理论及应用研究[D]. 武汉:武汉大学, 2011)
[11] Wang Leyang. Trilateration Net's Coordinate Adjustment Based on Total Least Squares[J]. Journal of Geodesy and Geodynamics, 2012, 32(6):81-85(王乐洋. 测边网坐标的总体最小二乘平差方法[J].大地测量与地球动力学, 2012, 32(6):81-85)
[12] Yao Yibin, Kong Jian. A New Combined LS Method Considering Random Errors of Design Matrix[J]. Geomatics and Information Science of Wuhan University, 2014, 39(9):1028-1032(姚宜斌,孔建. 顾及设计矩阵随机误差的最小二乘组合新解法[J]. 武汉大学学报·信息科学版, 2014, 39(9):1028-1032)
[13] Shen Y, Li B, Chen Y. An Iterative Solution of Weighted Total Least-squares Adjustment[J]. Journal of Geodesy, 2011, 85(4):229-238