[1] 李振洪, 李鹏, 丁咚, 等. 全球高分辨率数字高程模型研究进展与展望[J]. 武汉大学学报·信息科学版, 2018, 43(12): 1 927-1 942 doi:  10.13203/j.whugis20180295

Li Zhenhong, Li Peng, Ding Dong, et al. Research Progress of Global High Resolution Digital Elevation Models[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 1 927-1 942 doi:  10.13203/j.whugis20180295
[2] 周启鸣, 刘学军. 数字地形分析[M]. 北京: 科学出版社, 2006

Zhou Qiming, Liu Xuejun. Digital Terrain Analysis[M]. Beijing: Science Press, 2006
[3] Dragut L, Dornik A. Land-Surface Segmentation as a Method to Create Strata for Spatial Sampling and Its Potential for Digital Soil Mapping[J]. International Journal of Geographical Information Science, 2016, 30(7): 1 359-1 376 doi:  10.1080/13658816.2015.1131828
[4] Dornik A, Dragut L, Urdea P. Knowledge-Based Soil Type Classification Using Terrain Segmentation[J]. Soil Research, 2016, 54(7): 809-823 doi:  10.1071/SR15210
[5] 周访滨, 刘学军. 基于DTA山体部位分类决策方案的改进与微观地形自动分类研究[J]. 西北农业学报, 2008, 17(3): 343-346 doi:  10.3969/j.issn.1004-1389.2008.03.075

Zhou Fangbin, Liu Xuejun. Improved Hill-Position Classification Decision and Experiment of Micro Landform Classification Based on DTA[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2008, 17(3): 343-346 doi:  10.3969/j.issn.1004-1389.2008.03.075
[6] 周访滨, 刘学军. 基于栅格DEM自动划分微观地貌形态的研究[J]. 武汉理工大学学报(信息与管理工程版), 2008, 30(2): 172-175 doi:  10.3963/j.issn.1007-144X.2008.02.002

Zhou Fangbin, Liu Xuejun. Research on the Automated Classification of Micro Landform Based on Grid DEM[J]. Journal of Wuhan University of Technology(Information & Management Engineering), 2008, 30(2): 172-175 doi:  10.3963/j.issn.1007-144X.2008.02.002
[7] 李德仁. 脑认知与空间认知——论空间大数据与人工智能的集成[J]. 武汉大学学报·信息科学版, 2018, 43(12): 1 761-1 767 doi:  10.13203/j.whugis20180411

Li Deren. Brain Cognition and Spatial Cognition: On Integration of Geo-spatial Big Data and Artificial Intelligence[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 1 761-1 767 doi:  10.13203/j.whugis20180411
[8] 龚健雅. 人工智能时代测绘遥感技术的发展机遇与挑战[J]. 武汉大学学报·信息科学版, 2018, 43(12): 1 788-1 796 doi:  10.13203/j.whugis20180082

Gong Jianya. Chances and Challenges for Development of Surveying and Remote Sensing in the Age of Artificial Intelligence[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 1 788-1 796 doi:  10.13203/j.whugis20180082
[9] 刘经南, 高柯夫. 智能时代测绘与位置服务领域的挑战与机遇[J]. 武汉大学学报·信息科学版, 2017, 42(11): 1 506-1 517 doi:  10.13203/j.whugis20170324

Liu Jingnan, Gao Kefu. Challenges and Opportunities for Mapping and Surveying and Location Based Service in the Age of Intelligence[J]. Geomatics and Information Science of Wuhan University, 2017, 42(11): 1 506-1 517 doi:  10.13203/j.whugis20170324
[10] 熊伟. 人工智能对测绘科技若干领域发展的影响研究[J]. 武汉大学学报·信息科学版, 2019, 44(1): 101-105 doi:  10.13203/j.whugis20180344

Xiong Wei. Influence of Artificial Intelligence on the Development of Some Fields of Surveying and Mapping Technology[J]. Geomatics and Information Science of Wuhan University, 2019, 44(1): 101-105 doi:  10.13203/j.whugis20180344
[11] 高井祥, 王坚, 李增科. 智能背景下测绘科技发展的几点思考[J]. 武汉大学学报·信息科学版, 2019, 44(1): 55-61 doi:  10.13203/j.whugis20180342

Gao Jingxiang, Wang Jian, Li Zengke. Challenges for the Development of Surveying and Mapping Technology in the Age of Intelligence[J]. Geomatics and Information Science of Wuhan University, 2019, 44(1): 55-61 doi:  10.13203/j.whugis20180342
[12] 刘倩, 陈时雨, 蔡杨, 等. 顾及空间信息与全卷积神经网络的高分辨率遥感影像分类方法[J]. 测绘地理信息, 2020, 45(4): 93-99 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXG202004020.htm

Liu Qian, Chen Shiyu, Cai Yang, et al. A High-Resolution Remote Sensing Image Classification Method Based on Spatial Information and Fully Convolutional Networks[J]. Journal of Geomatics, 2020, 45(4): 93-99 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXG202004020.htm
[13] 汪珊娜, 张华熊, 康锋. 基于卷积神经网络的领带花型情感分类[J]. 纺织学报, 2018, 39(8): 117-123 https://www.cnki.com.cn/Article/CJFDTOTAL-FZXB201808020.htm

Wang Shanna, Zhang Huaxiong, Kang Feng. Emotion Classification of Necktie Pattern Based on Convolution Neural Network[J]. Journal of Textile Research, 2018, 39(8): 117-123 https://www.cnki.com.cn/Article/CJFDTOTAL-FZXB201808020.htm
[14] 秦承志, 卢岩君, 包黎莉, 等. 简化数字地形分析软件(SimDTA)及其应用: 以嫩江流域鹤山农场区的坡位模糊分类为例[J]. 地球信息科学学报, 2009, 11(6): 737-743 doi:  10.3969/j.issn.1560-8999.2009.06.008

Qin Chengzhi, Lu Yanjun, Bao Lili, et al. Simple Digital Terrain Analysis Software (SimDTA 1.0) and Its Application in Fuzzy Classification of Slope Positions[J]. Journal of Geo-information Science, 2009, 11(6): 737-743 doi:  10.3969/j.issn.1560-8999.2009.06.008
[15] Qin Chengzhi, Zhu Axing, Shi Xun, et al. Quantification of Spatial Gradation of Slope Positions[J]. Geomorphology, 2009, 110(3): 152-161 http://www.cabdirect.org/abstracts/20103018842.html
[16] Qin Chengzhi, Zhu Axing, Qiu Weili, et al. Mapping Soil Organic Matter in Small Low-Relief Catchments Using Fuzzy Slope Position Information[J]. Geoderma, 2012, 171(2): 64-74 http://www.sciencedirect.com/science/article/pii/S0016706111001753
[17] 王彦文, 秦承志. 地貌形态类型的自动分类方法综述[J]. 地理与地理信息科学, 2017, 33(4): 16-21 https://www.cnki.com.cn/Article/CJFDTOTAL-DLGT201704003.htm

Wang Yanwen, Qin Chengzhi. Review of Method for Landform Automatic Classification[J]. Geography and Geo-information Science, 2017, 33(4): 16-21 https://www.cnki.com.cn/Article/CJFDTOTAL-DLGT201704003.htm
[18] 王磊, 马风华, 武伟, 等. 基于随机森林算法的模糊坡位分类[J]. 西南师范大学学报(自然科学版), 2018, 43(1): 10-17 https://www.cnki.com.cn/Article/CJFDTOTAL-XNZK201801003.htm

Wang Lei, Ma Fenghua, Wu Wei, et al. Fuzzy Slope Position Segmentation Based on Random Forest[J]. Journal of Southwest China Normal University(Natural Science Edition), 2018, 43(1): 10-17 https://www.cnki.com.cn/Article/CJFDTOTAL-XNZK201801003.htm
[19] 方匡南, 吴见彬, 朱建平, 等. 随机森林方法研究综述[J]. 统计与信息论坛, 2011, 26(3): 32-38 https://www.cnki.com.cn/Article/CJFDTOTAL-TJLT201103007.htm

Fang Kuangnan, Wu Jianbin, Zhu Jianping, et al. A Review of Technologies on Random Forests[J]. Statistics & Information Forum, 2011, 26(3): 32-38 https://www.cnki.com.cn/Article/CJFDTOTAL-TJLT201103007.htm
[20] 赵丽娟. 基于BP神经网络的遥感影像分类研究[D]. 南昌: 东华理工大学, 2014

Zhao Lijuan. Remote Sensing Image Study of Classification Based on BP Neural Network[D]. Nanchang: East China University of Technology, 2014
[21] 周飞燕, 金林鹏, 董军. 卷积神经网络研究综述[J]. 计算机学报, 2017, 40(6): 1 229-1 251 https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201706001.htm

Zhou Feiyan, Jin Linpeng, Dong Jun. Review of Convolutional Neural Network[J]. Chinese Journal of Computers, 2017, 40(6): 1 229-1 251 https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201706001.htm
[22] Le C Y, Bengio Y, Hinton G. Deep Learning[J]. Nature, 2015, 521(7 553): 436-444
[23] Erik D S. Deep Learning and Computational Neuroscience[J]. Neuroinformatics, 2018, 16(1), DOI:  10.1007/s12021-018-9360-6
[24] Gu Jiuxiang, Wang Zhenhua, Kuen Jason. Recent Advances in Convolutional Neural Networks[J]. Pattern Recognition, 2018, 77(5): 354-377
[25] Sainath T N, Kingsbury B, Mohamed A R, et al. Improvements to Deep Convolutional Neural Networks for LVCSR[C]. IEEE Workshop on Automatic Speech Recognition and Understanding, Olomouc, Czech, 2013
[26] 魏贞原. 深度学习-基于Keras的Python实践[M]. 北京: 电子工业出版社, 2018

Wei Zhenyuan. Deep Learning Python Practice Based on Keras[M]. Beijing: Publishing House of Electronics Industry, 2018