[1] Ader T, Avouac J P, Jing L Z, et al. Convergence Rate Across the Nepal Himalaya and Interseismic Coupling on the Main Himalayan Thrust: Implications for Seismic Hazard[J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B4):398-399 http://www.onacademic.com/detail/journal_1000035774023710_6372.html
[2] Bilham R, Gaur V K, Molnar P. Earthquakes, Himalayan Seismic Hazard[J]. Science, 2001, 293(5 534):1 442-1 446 doi:  10.1126/science.1062584
[3] 占伟, 武艳强, 梁洪宝, 等. GPS观测结果反映的尼泊尔Mw7.8地震孕震特征[J].地球物理学报, 2015, 58(5):1 818-1 826 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201505032

Zhan Wei, Wu Yanqiang Q, Liang Hongbao, et al. Characteristics of the Seismogenic Model for the 2015 Nepal Mw7.8 Earthquake Derived from GPS Data[J]. Chinese Journal of Geophysics, 2015, 58(5):1 818-1 826 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201505032
[4] Gualandi A, Avouac J P, Galetzka J, et al. Pre- and Post-seismic Deformation Related to the 2015 Mw7.8 Gorkha Earthquake, Nepal[J]. Tectonophysics, 2016, 714: 90-106 http://www.sciencedirect.com/science/article/pii/S0040195116302207
[5] 李水平, 王琪, 陈刚, 等.尼泊尔Mw7.9级地震同震垂直位移与断层运动模型[J].武汉大学学报·信息科学版, 2017, 42(10):1 489-1 496 doi:  10.13203/j.whugis20160057

Li Shuiping, Wang Qi, Chen Gang, et al. Coseismic Vertical Displacement and Fault Motion Model of the Nepal Mw7.9 Earthquake[J].Geomatics and Information Science of Wuhan University, 2017, 42(10): 1 489-1 496 doi:  10.13203/j.whugis20160057
[6] Segall P, Davis J L. GPS Applications for Geodynamics and Earthquake Studies[J]. Annual Review of Earth & Planetary Sciences, 1997, 25(6):301-336 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC027640862
[7] Jónsson S, Segall P, Pedersen R, et al. Post-earthquake Ground Movements Correlated to Pore-pressure Transients[J]. Nature, 2003, 424(6 945):179-183 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gjdzdt200607013
[8] Hsu Y J, Simons M, Avouac J P, et al. Frictional After-slip Following the 2005 Nias-Simeulue Earthquake, Sumatra[J]. Science, 2006, 312(5 782): 1 921-1 926 doi:  10.1126/science.1126960
[9] Pollitz F F, Bürgmann R, Banerjee P. Post-seismic Relaxation Following the Great 2004 Sumatra-Andaman Earthquake on a Compressible Self-gravitating Earth[J]. Geophysical Journal of the Royal Astronomical Society, 2010, 167(1):397-420 http://gji.oxfordjournals.org/content/167/1/397
[10] Bruhat L, Barbot S, Avouac J P. Evidence for Postseismic Deformation of the Lower Crust Following the 2004 Mw6.0 Parkfield Earthquake[J]. Journal of Geophysical Research Solid Earth, 2011, 116(B8):190-201 doi:  10.1029/2010JB008073/full
[11] Wang K, Hu Y, He J. Deformation Cycles of Subduction Earthquakes in a Viscoelastic Earth[J]. Nature, 2012, 484(7 394):327-338 doi:  10.1038/nature11032
[12] Diao F, Xiong X, Wang R, et al. Overlapping Post-seismic Deformation Processes: Afterslip and Viscoelastic Relaxation Following the 2011 Mw9.0 Tohoku (Japan) Earthquake[J]. Geophysical Journal International, 2014, 196(1):218-229 doi:  10.1093/gji/ggt376
[13] Sreejith K M, Sunil P S, Agrawal R, et al. Coseismic and Early Postseismic Deformation Due to the 25 April 2015, Mw7.8 Gorkha, Nepal, Earthquake from InSAR and GPS Measurements[J]. Geophysical Research Letters, 2016, 43(7):3 160-3 168 doi:  10.1002/2016GL067907
[14] Mencin D, Bendick R, Upreti B N, et al. Himalayan Strain Reservoir Inferred from Limited Afterslip Following the Gorkha Earthquake[J]. Nature Geoscience, 2016, 9(7):3-6 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b7de4b16c2241ceeb40cfafc031eca51
[15] Zhao B, Bürgmann R, Wang D, et al. Dominant Controls of Down-dip Afterslip and Viscous Relaxation on the Postseismic Displacements Following the Mw7.9 Gorkha, Nepal Earthquake[J]. Journal of Geophysical Research: Solid Earth, 2017, 122:1-14 doi:  10.1002/2017JB014366
[16] Wang R, Lorenzo-Martín E, Roth F. PSGRN/PSCMP—A New Code for Calculating Co-seismic and Post-seismic Deformation, Geoid and Gravity Changes Based on the Viscoelastic-gravitational Dislocation Theory[J]. Computers & Geosciences, 2006, 32(4):527-541 http://www.sciencedirect.com/science/article/pii/S0098300405001895
[17] Jiang Z, Yuan L, Huang D, et al. Postseismic Deformation Associated with the 2015 Mw7.8 Gorkha Earthquake, Nepal: Investigating Ongoing Afterslip and Constraining Crustal Rheology[J]. Journal of Asian Earth Sciences, 2018, 156:1-10 doi:  10.1016/j.jseaes.2017.12.039
[18] Wang K, Fialko Y. Observations and Modeling of Coseismic and Postseismic Deformation due to the 2015 Mw7.8 Gorkha (Nepal) Earthquake[J]. Journal of Geophysical Research Solid Earth, 2018, 123:761-779 doi:  10.1002/2017JB014620
[19] Sun W, Okubo S, Fu G, et al. General Formulations of Global Co-seismic Deformations Caused by an Arbitrary Dislocation in a Spherically Symmetric Earth Model-Applicable to Deformed Earth Surface and Space-fixed Point[J]. Geophysical Journal of the Royal Astronomical Society, 2010, 177(3):817-833 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HighWire000006092770
[20] Tanaka Y, Okuno J, Okubo S. A New Method for the Computation of Global Viscoelastic Post-seismic Deformation in a Realistic Earth Model (I)—Vertical Displacement and Gravity Variation[J]. Geophysical Journal of the Royal Astronomical Society, 2006, 164(2):273-289 doi:  10.1111/j.1365-246X.2005.02821.x
[21] Tanaka Y, Okuno J, Okubo S. A New Method for the Computation of Global Viscoelastic Post-seismic Deformation in a Realistic Earth Model (Ⅱ)-Horizontal Displacement[J]. Geophysical Journal of the Royal Astronomical Society, 2007, 170(3):1 031-1 052 doi:  10.1111/j.1365-246X.2007.03486.x
[22] Stevens V L, Avouac J P. Interseismic Coupling on the Main Himalayan Thrust[J]. Geophysical Research Letters, 2015, 42(14):5 828-5 837 doi:  10.1002/2015GL064845
[23] Huang M H, Bürgmann R, Freed A M. Probing the Lithospheric Rheology Across the Eastern Margin of the Tibetan Plateau[J]. Earth & Planetary Science Letters, 2014, 396(396):88-96 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9860106b8666c44a183243ec004b8bed
[24] Ozawa S, Nishimura T, Suito H, et al. Coseismic and Postseismic Slip of the 2011 Magnitude-9 Tohoku-Oki Earthquake[J]. Nature, 2011, 475(7 356):373-376 doi:  10.1038/nature10227
[25] Ozawa S, Nishimura T, Munekane H, et al. Preceding Coseismic, and Postseismic Slips of the 2011 Tohoku Earthquake, Japan[J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B7):1-20 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/2011JB009120
[26] Wang L, Wang R, Roth F, et al. Afterslip and Viscoelastic Relaxation Following the 1999 M 7.4 İzmit Earthquake from GPS Measurements[J]. Geophysical Journal International, 2009, 178(3):1220-1237 doi:  10.1111/j.1365-246X.2009.04228.x
[27] Diao F Q, Xiong X, Zheng Y, et al. Static Slip Model of the Mw 9.0 Tohoku (Japan) Earthquake: Results from Joint Inversion of Terrestrial GPS Data and Seafloor GPS/Acoustic Data[J]. Science Bulletin, 2012, 57(16):1 990-1 997 doi:  10.1007/s11434-012-5014-5
[28] 刘刚, 杨少敏, 师宏波, 等. 2015年尼泊尔地震破裂过程的统一模型[J].地球物理学报, 2017, 60(7):2 663-2 679 http://www.cnki.com.cn/Article/CJFDTotal-DQWX201707014.htm

Liu Gang, Yang Shaomin, Shi Hongbo, et al. A Unified Source Model of the 2015 Gorkha Earthquake[J]. Chinese Journal of Geophysics, 2017, 60(7):2 663-2 679 http://www.cnki.com.cn/Article/CJFDTotal-DQWX201707014.htm
[29] Lorenzo-Martín F, Roth F, Wang R. Inversion for Rheological Parameters from Post-seismic Surface Deformation Associated with the 1960 Valdivia Earthquake, Chile[J]. Geophysical Journal of the Royal Astronomical Society, 2006, 164(1):75-87 doi:  10.1111/j.1365-246X.2005.02803.x
[30] Pollitz F, Banerjee P, Grijalva K, et al. Effect of 3-D Viscoelastic Structure on Post-seismic Relaxation from the 2004 M= 9.2 Sumatra Earthquake[J]. Geophysical Journal of the Royal Astronomical Society, 2008, 173(1):189-204 doi:  10.1111/j.1365-246X.2007.03666.x
[31] Hoechner A, Sobolev S V, Einarsson I, et al. Investigation on Afterslip and Steady State and Transient Rheology Based on Postseismic Deformation and Geoid Change Caused by the Sumatra 2004 Earthquake[J]. Geochemistry Geophysics Geosystems, 2011, 12(7):1-14 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/2010GC003450
[32] Sheu S Y, Shieh C F. Viscoelastic-Afterslip Concurrence: A Possible Mechanism in the Early Post-seismic Deformation of the Mw7.6, 1999 Chi-Chi (Taiwan) Earthquake[J]. Geophysical Journal of the Royal Astronomical Society, 2004, 159(3):1112-1124 doi:  10.1111/j.1365-246X.2004.02437.x
[33] Zhou X, Cambiotti G, Sun W, et al. The Coseismic Slip Distribution of a Shallow Subduction Fault Constrained by Prior Information: The Example of 2011 Tohoku (Mw 9.0) Megathrust Earthquake[J]. Geophysical Journal International, 2014, 199(2):981-995 doi:  10.1093/gji/ggu310
[34] Yabuki T, Matsu'ura M. Geodetic Data Inversion Using a Bayesian Information Criterion for Spatial Distribution of Fault Slip[J]. Geophysical Journal of the Royal Astronomical Society, 1992, 109(2):363-375 doi:  10.1111/j.1365-246X.1992.tb00102.x