[1] Fotheringham A S, Brunsdon C. Local Forms of Spatial Analysis[J]. Geographical Analysis, 1999, 31(4): 340-358 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1111/j.1538-4632.1999.tb00989.x
[2] Goodchild M F. The Validity and Usefulness of Laws in Geographic Information Science and Geography[J]. Annals of the Association of American Geographers, 2004, 94(2): 300-303 doi:  10.1111/j.1467-8306.2004.09402008.x
[3] Páez A. Local Analysis of Spatial Relationships: A Comparison of GWR and the Expansion Method[C]. The 5th International Conference on Computational Science and Its Applications, Singapore, 2005
[4] Swamy P A V B, Conway R K, Leblanc M R. The Stochastic Coefficients Approach to Econometric Modeling, Part 1: A Critique of Fixed Coefficients Models[R]. US: Board of Governors of the Federal Reserve System, 1988
[5] Gamerman D, Moreira A R B, Rue H.Space-Varying Regression Models: Specifications and Simulation[J]. Computational Statistics & Data Analysis, 2003, 42(3): 513-533 http://www.sciencedirect.com/science/article/pii/S0167947302002116
[6] Cleveland W S. Robust Locally Weighted Regression and Smoothing Scatterplots[J]. Journal of the American Statistical Association, 1979, 74(368): 829-836 doi:  10.1080/01621459.1979.10481038
[7] Brunsdon C, Fotheringham A S, Charlton M E. Geographically Weighted Regression: A Method for Exploring Spatial Nonstationarity[J]. Geographical Analysis, 1996, 28(4): 281-298
[8] Páez A, Wheeler D. Geographically Weighted Regression[M]// Kitchin R, Thrift N. International Encyclopedia of Human Geography.Oxford: Elsevier, 2009: 407-414
[9] Aria M, Cuccurullo C. Bibliometrix: An R-Tool for Comprehensive Science Mapping Analysis[J]. Journal of Informetrics, 2017, 11(4): 959-975 doi:  10.1016/j.joi.2017.08.007
[10] 玄海燕, 李琪, 张运虎.基于地理加权回归的我国各市人口总数的空间特征分析[J].生物数学学报, 2016, 31(2): 223-228 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=swsxxb201602009

Xuan Haiyan, Li Qi, Zhang Yunhu. Spatial Characteristics Analysis of Total Population in Various Cities Based on Geographically Weighted Regression[J]. Journal of Biomathematic, 2016, 31(2): 223-228 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=swsxxb201602009
[11] 赵阳阳, 刘纪平, 张福浩, 等.贪心算法的地理加权回归特征变量选择方法[J].测绘科学, 2016, 41(7): 41-46 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=chkx201607009

Zhao Yangyang, Liu Jiping, Zhang Fuhao, et al.An Approach of Characteristics Variable Selection of Geographically Weighted Regression Based on Greedy Algorithm[J]. Science of Surveying and Mapping, 2016, 41(7): 41-46 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=chkx201607009
[12] Tobler W R. A Computer Movie Simulating Urban Growth in the Detroit Region[J]. Economic Geography, 1970, 46(2): 234-240 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.2307/143141
[13] Fotheringham A S, Brunsdon C, Charlton M. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships[M]. Chichester: Wiley, 2002
[14] Cho S H, Lambert D M, Chen Z. Geographically Weighted Regression Bandwidth Selection and Spatial Autocorrelation: An Empirical Example Using Chinese Agriculture Data[J]. Applied Economics Letters, 2010, 17(8): 767 - 772 doi:  10.1080/13504850802314452
[15] Cameron A C, Trivedi P K. Microeconometrics: Methods and Applications[M]. New York: Cambridge University Press, 2005
[16] Farber S, Páez A. A Systematic Investigation of Cross-Validation in GWR Model Estimation:Empirical Analysis and Monte Carlo Simulations[J]. Journal of Geographical Systems, 2007, 9(4): 371-396 doi:  10.1007/s10109-007-0051-3
[17] Akaike H. Information Theory and an Extension of the Maximum Likelihood Principle[C]. 2nd International Symposium on Information Theory. Tsahkadsor, Armenia, 1973
[18] Mennis J. Mapping the Results of Geographically Weighted Regression[J]. The Cartographic Journal, 2006, 43(2): 171-179 doi:  10.1179/000870406X114658
[19] Leung Y, Mei C L, Zhang W X. Testing for Spatial Autocorrelation Among the Residuals of the Geographically Weighted Regression[J]. Environment and Planning A, 2000, 32(5): 871-890 doi:  10.1068/a32117
[20] Leung Y, Mei C L, Zhang W X. Statistical Tests for Spatial Nonstationarity Based on the Geographically Weighted Regression Model[J]. Environment and Planning A, 2000, 32(1): 9-32 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1068/a3162
[21] Comber A, Chi K, Huy M Q, et al. Distance Metric Choice Can Both Reduce and Induce Collinearity in Geographically Weighted Regression[J]. Environment and Planning B: Urban Analytics and City Science, 2018, DOI: 10.1177/2399808318784017
[22] Griffith D A. Spatial-Filtering-Based Contributions to a Critique of Geographically Weighted Regression (GWR)[J]. Environment and Planning A, 2008, 40(11): 2 751-2 769 doi:  10.1068/a38218
[23] Wheeler D, Tiefelsdorf M. Multicollinearity and Correlation Among Local Regression Coefficients in Geographically Weighted Regression[J]. Journal of Geographical Systems, 2005, 7(2): 161-187 doi:  10.1007/s10109-005-0155-6
[24] Wheeler D C. Simultaneous Coefficient Penalization and Model Selection in Geographically Weighted Regression: The Geographically Weighted Lasso[J]. Environment and Planning A, 2009, 41(3): 722-742
[25] Wheeler D C. Diagnostic Tools and a Remedial Method for Collinearity in Geographically Weighted Regression[J]. Environment and Planning A, 2007, 39(10): 2 464-2 481 doi:  10.1068/a38325
[26] Gollini I, Lu B, Charlton M, et al. GWmodel: An R Package for Exploring Spatial Heterogeneity Using Geographically Weighted Models[J]. Journal of Statistical Software, 2015, 63(17): 1-50 http://www.researchgate.net/publication/237000443_GWmodel_an_R_Package_for_Exploring_Spatial_Heterogeneity_using_Geographically_Weighted_Models
[27] Fotheringham A S, Oshan T M. Geographically Weighted Regression and Multicollinearity: Dispelling the Myth[J]. Journal of Geographical Systems, 2016, 18(4): 303-329 doi:  10.1007/s10109-016-0239-5
[28] Jetz W, Rahbek C, Lichstein J W. Local and Global Approaches to Spatial Data Analysis in Ecology[J]. Global Ecology and Biogeography, 2005, 14(1): 97-98 doi:  10.1111/j.1466-822X.2004.00129.x
[29] Wheeler D C, Páez A: Geographically Weighted Regression[M]. Fischer M M, Getis A. Handbook of Applied Spatial Analysis: Software Tools, Methods and Applications. Berlin, Heidelberg: Springer-Verlag, 2010: 461-486
[30] Da Silva A R, Fotheringham A S. The Multiple Testing Issue in Geographically Weighted Regression[J]. Geographical Analysis, 2016, 48(3): 233-247 doi:  10.1111/gean.12084
[31] Byrne G, Charlton M, Fotheringham S. Multiple Dependent Hypothesis Tests in Geographically Weighted Regression[C]. The 10th International Conference on Geocomputation, Sydney, Australia, 2009
[32] Kitchin R. Space Ⅱ[M]//Kitchin R, Thrift N. International Encyclopedia of Human Geography. Oxford: Elsevier, 2009: 268-275
[33] Lu B, Charlton M, Harris P, et al. Geographically Weighted Regression with a Non-Euclidean Distance Metric: A Case Study Using Hedonic House Price Data[J]. International Journal of Geographical Information Science, 2014, 28(4): 660-681 doi:  10.1080/13658816.2013.865739
[34] Lu B, Charlton M, Brunsdon C, et al. The Minkowski Approach for Choosing the Distance Metric in Geographically Weighted Regression[J]. International Journal of Geographical Information Science, 2016, 30(2): 351-368 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/13658816.2015.1087001
[35] Fotheringham A S, Yang W, Kang W. Multiscale Geographically Weighted Regression (MGWR)[J]. Annals of the American Association of Geographers, 2017, 107(6): 1 247-1 265 doi:  10.1080/24694452.2017.1352480
[36] Lu B, Brunsdon C, Charlton M, et al. A Response to 'A Comment on Geographically Weighted Regression with Parameter-Specific Distance Metrics'[J]. International Journal of Geographical Information Science, 2019, 33(7): 1 300-1 312 doi:  10.1080/13658816.2019.1585541
[37] Brunsdon C, Fotheringham A S, Charlton M. Some Notes on Parametric Significance Tests for Geographically Weighted Regression[J]. Journal of Regional Science, 1999, 39(3): 497-524 doi:  10.1111/0022-4146.00146
[38] 覃文忠, 王建梅, 刘妙龙.混合地理加权回归模型算法研究[J].武汉大学学报·信息科学版, 2007, 32(2): 115-119 http://ch.whu.edu.cn/article/id/1813

Qin Wenzhong, Wang Jianmei, Liu Miaolong. Algorithm for Mixed Geographically Weighted Regression Mode[J]. Geomatics and Information Science of Wuhan University, 2007, 32(2): 115-119 http://ch.whu.edu.cn/article/id/1813
[39] 玄海燕, 刘树群, 罗双华.混合地理加权回归模型的两种估计[J].兰州理工大学学报, 2007, 33(3): 142-144 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gsgydx200703038

Xuan Haiyan, Liu Shuqun, Luo Shuanghua. Two Kinds of Estimation of Mixed Geographically Weighted Regression Mode[J]. Journal of Lanzhou University of Technology, 2007, 33(3): 142-144 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gsgydx200703038
[40] 聂磊, 舒红, 刘艳.复杂地形地区月平均气温(混合)地理加权回归克里格插值[J].武汉大学学报·信息科学版, 2018, 43(10):1 553-1 559 doi:  10.13203/j.whugis20160433

Nie Lei, Shu Hong, Liu Yan. Interpolation of Monthly Average Temperature by Using (Mixed) Geographically Weighted Regression Kriging in the Complex Terrain Region[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10):1 553-1 559 doi:  10.13203/j.whugis20160433
[41] Mei C L, Xu M, Wang N. A Bootstrap Test for Constant Coefficients in Geographically Weighted Regression Models[J]. International Journal of Geographical Information Science, 2016, 30(8): 1 622-1 643 doi:  10.1080/13658816.2016.1149181
[42] Mei C L, Wang N, Zhang W X. Testing the Importance of the Explanatory Variables in a Mixed Geographically Weighted Regression Model[J]. Environment and Planning A, 2006, 38(3): 587-598 doi:  10.1068/a3768
[43] Harris P, Brunsdon C, Lu B, et al. Introducing Bootstrap Methods to Investigate Coefficient Non-stationarity in Spatial Regression Models[J]. Spatial Statistics, 2017, 21: 241-261 doi:  10.1016/j.spasta.2017.07.006
[44] Yang W, Fotheringham A S, Harris P. An Extension of Geographically Weighted Regression with Flexible Bandwidths[C]. GISRUK, Lancaster, UK, 2012
[45] Yang W. An Extension of Geographically Weighted Regression with Flexible Bandwidths[D]. UK: Centre for GeoInformatics, University of St Andrews, 2014
[46] Leong Y Y, Yue J C. A Modification to Geographically Weighted Regression[J]. International Journal of Health Geographics, 2017, 16(1): 11 doi:  10.1186/s12942-017-0085-9
[47] Lu B, Brunsdon C, Charlton M, et al. Geographically Weighted Regression with Parameter-Specific Distance Metrics[J]. International Journal of Geographical Information Science, 2017, 31(5): 982-998 doi:  10.1080/13658816.2016.1263731
[48] Lu B, Yang W, Ge Y, et al. Improvements to the Calibration of a Geographically Weighted Regression with Parameter-Specific Distance Metrics and Bandwidths[J]. Computers, Environment and Urban Systems, 2018, 71: 41-57 doi:  10.1016/j.compenvurbsys.2018.03.012
[49] Ge Y, Jin Y, Stein A, et al. Principles and Methods of Scaling Geospatial Earth Science Data[J]. Earth-Science Reviews, 2019, 197: 102 897 doi:  10.1016/j.earscirev.2019.102897
[50] Wolf L, Oshan T, Fotheringham A. Single and Multiscale Models of Process Spatial Heterogeneity[J]. Geographical Analysis, 2018, 50(3): 223-246 doi:  10.1111/gean.12147
[51] Yu H, Fotheringham A S, Li Z, et al. Inference in Multiscale Geographically Weighted Regression[J]. Geographical Analysis, 2020, 52(1): 87-106 doi:  10.1111/gean.12189
[52] Wu C, Ren F, Hu W, et al. Multiscale Geographically and Temporally Weighted Regression: Exploring the Spatiotemporal Determinants of Housing Prices[J]. International Journal of Geographical Information Science, 2019, 33(3): 489-511 doi:  10.1080/13658816.2018.1545158
[53] Huang B, Wu B, Barry M. Geographically and Temporally Weighted Regression for Modeling Spatio-Temporal Variation in House Prices[J]. International Journal of Geographical Information Science, 2010, 24(3): 383-401 doi:  10.1080/13658810802672469
[54] Fotheringham A S, Crespo R, Yao J. Geographical and Temporal Weighted Regression (GTWR)[J]. Geographical Analysis, 2015, 47(4): 431-452 doi:  10.1111/gean.12071
[55] Wu B, Li R, Huang B. A Geographically and Temporally Weighted Autoregressive Model with Application to Housing Prices[J]. International Journal of Geographical Information Science, 2014, 28(5): 1 186-1 204 doi:  10.1080/13658816.2013.878463
[56] Du Z, Wu S, Zhang F, et al. Extending Geographically and Temporally Weighted Regression to Account for Both Spatiotemporal Heterogeneity and Seasonal Variations in Coastal Seas[J]. Ecological Informatics, 2018, 43: 185-199 doi:  10.1016/j.ecoinf.2017.12.005
[57] 赵阳阳, 张小璐, 张福浩, 等.一种局部多项式时空地理加权回归方法[J].测绘学报, 2018, 47(5): 663-671 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=chxb201805013

Zhao Yangyang, Zhang Xiaolu, Zhang Fuhao, et al. A Local Polynomial Geographically and Temporally Weight Regression[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(5): 663-671 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=chxb201805013
[58] Liu Y, Lam K, Wu J, et al. Geographically Weighted Temporally Correlated Logistic Regression Model[J]. Scientific Reports, 2018, 8(1): 1 417 doi:  10.1038/s41598-018-19772-6
[59] Lesage J P. A Family of Geographically Weighted Regression Models[M]//Anselin L, Florax R J, Rey S J. Advances in Spatial Econometrics. Berlin, Heidelberg: Springer, 2002
[60] Harris P, Fotheringham A S, Juggins S. Robust Geographically Weighted Regression: A Technique for Quantifying Spatial Relationships Between Freshwater Acidification Critical Loads and Catchment Attributes[J]. Annals of the Association of American Geographers, 2010, 100(2): 286-306 doi:  10.1080/00045600903550378
[61] Wang N, Mei C L, Yan X D. Local Linear Estimation of Spatially Varying Coefficient Models: An Improvement on the Geographically Weighted Regression Technique[J]. Environment and Planning A, 2008, 40(4): 986-1 005 doi:  10.1068/a3941
[62] Harris P, Juggins S. Estimating Freshwater Acidification Critical Load Exceedance Data for Great Britain Using Space-Varying Relationship Models[J]. Mathematical Geosciences, 2011, 43(3): 265-292 doi:  10.1007/s11004-011-9331-z
[63] Nakaya T, Fotheringham A S, Brunsdon C, et al. Geographically Weighted Poisson Regression for Disease Association Mapping[J]. Statistics in Medicine, 2005, 24(17): 2 695-2 717 doi:  10.1002/sim.2129
[64] Atkinson P M, German S E, Sear D A, et al. Exploring the Relations Between Riverbank Erosion and Geomorphological Controls Using Geographically Weighted Logistic Regression[J]. Geographical Analysis, 2003, 35(1): 58-82 doi:  10.1111/j.1538-4632.2003.tb01101.x
[65] Harris R, Singleton A, Grose D, et al. Grid-Enabling Geographically Weighted Regression: A Case Study of Participation in Higher Education in England[J]. Transactions in GIS, 2010, 14(1): 43-61 doi:  10.1111/j.1467-9671.2009.01181.x
[66] Dong G, Nakaya T, Brunsdon C. Geographically Weighted Regression Models for Ordinal Categorical Response Variables:An Application to Geo-referenced Life Satisfaction Data[J]. Computers, Environment and Urban Systems, 2018, 70: 35-42 doi:  10.1016/j.compenvurbsys.2018.01.012
[67] Li Z, Fotheringham A S, Li W, et al. Fast Geographically Weighted Regression (FastGWR): A Scalable Algorithm to Investigate Spatial Process Heterogeneity in Millions of Observations[J]. International Journal of Geographical Information Science, 2019, 33(1): 155-175
[68] Murakami D, Tsutsumida N, Yoshida T, et al. Scalable GWR: A Linear-Time Algorithm for Large-Scale Geographically Weighted Regression with Polynomial Kernels[OL]. https://arxiv.org/abs/1905.00266, 2019
[69] Harris P.A Simulation Study on Specifying a Regression Model for Spatial Data: Choosing Between Autocorrelation and Heterogeneity Effects[J]. Geographical Analysis, 2019, 51(2): 151-181 doi:  10.1111/gean.12163
[70] Charlton M, Fotheringham A, Brunsdon C. GWR 3: Software for Geographically Weighted Regression[OL]. http://www.uvm.edu/rsenr/gradgis/GWR3Manual.pdf, 2003
[71] Nakaya T, Charlton M, Fotheringham S, et al. How to Use SGWRWIN (GWR4.0)[R]. Ireland: National Centre for Geocomputation, 2009
[72] Oshan M T, Li Z, Kang W, et al. MGWR: A Python Implementation of Multiscale Geographically Weighted Regression for Investigating Process Spatial Heterogeneity and Scale[J]. ISPRS International Journal of Geo-Information, 2019, 8(6): 1-31 http://www.researchgate.net/publication/333694051_MGWR_A_Python_Implementation_of_Multiscale_Geographically_Weighted_Regression_for_Investigating_Process_Spatial_Heterogeneity_and_Scale
[73] Lu B, Harris P, Charlton M, et al. The GWmodel R Package: Further Topics for Exploring Spatial Heterogeneity Using Geographically Weighted Models[J]. Geo-Spatial Information Science, 2014, 17(2): 85-101 http://d.wanfangdata.com.cn/periodical/dqkjxxkxxb-e201402002
[74] Eddelbuettel D, Francois R. Rcpp: Seamless R and C++ Integration[J]. Journal of Statistical Software, 2011, 1(8): 1-19 http://www.researchgate.net/publication/227450960_Rcpp_Seamless_R_and_C_Integration
[75] Wheeler D. GWRR: Fits Geographically Weighted Regression Models with Diagnostic Tools: R Package Version 0.2-1[OL]. https://CRAN.R-project.org/package=gwrr, 2013