[1] |
Su W, Zhu D H, Huang J X, et al. Estimation of the Vertical Leaf Area Profile of Corn(Zea Mays) Plants Using Terrestrial Laser Scanning(TLS)[J]. Computers and Electronics in Agriculture, 2018, 150: 5-13 doi: 10.1016/j.compag.2018.03.037 |
[2] |
Li S H, Dai L Y, Wang H S, et al. Estimating Leaf Area Density of Individual Trees Using the Point Cloud Segmentation of Terrestrial LiDAR Data and a Voxel-Based Model[J]. Remote Sensing, 2017, 9 (12): 1 202 http://www.onacademic.com/detail/journal_1000040544495810_fbb8.html |
[3] |
于颖, 宋张亮, 范文义, 等. 植被冠层光谱和叶片光谱的尺度转换[J]. 武汉大学学报·信息科学版, 2018, 43(10): 1 560-1 565, 1 573 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201810018.htm
Yu Ying, Song Zhangliang, Fan Wenyi, et al. Scale Conversion from Canopy Spectra to Leaf Spectra[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10): 1 560-1 565, 1 573 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201810018.htm |
[4] |
王洪蜀. 基于地基激光雷达数据的单木与阔叶林叶面积密度反演[D]. 成都: 电子科技大学, 2015
Wang Hongshu. Leaf Area Density Inversion for a Single Tree and Broadleaf Forest Based on Terrestrial LiDAR Data[D]. Chengdu: University of Electronic Science and Technology of China, 2015 |
[5] |
Soma M, Pimont F, Durrieu S, et al. Enhanced Measurements of Leaf Area Density with T-LiDAR: Evaluating and Calibrating the Effects of Vegetation Heterogeneity and Scanner Properties [J]. Remote Sensing, 2018, 10(10): 1 580 doi: 10.3390/rs10101580 |
[6] |
王洪蜀, 李世华, 郭加伟, 等. 地基激光雷达的玉兰林冠层叶面积密度反演[J]. 遥感学报, 2016, 20 (4): 570-578 https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201604006.htm
Wang Hongshu, Li Shihua, Guo Jiawei, et al. Retrieval of the Leaf Area Density of Magnolia Woody Canopy with Terrestrial Laser-Scanning Data[J]. Journal of Remote Sensing, 2016, 20(4): 570-578 https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201604006.htm |
[7] |
Weiss M, Baret F, Smith G J, et al. Review of Methods for in Situ Leaf Area Index(LAI)Determination: Part Ⅱ. Estimation of LAI, Errors and Sam pling[J]. Agricultural and Forest Meteorology, 2004, 121(1): 37-53 http://europepmc.org/abstract/AGR/IND43620910 |
[8] |
Hosoi F, Omasa K. Detecting Seasonal Change of Broad-Leaved Woody Canopy Leaf Area Density Profile Using 3D Portable LiDAR Imaging[J]. Functional Plant Biology, 2009, 36: 998-1 005 doi: 10.1071/FP09113 |
[9] |
Lovell J L, Jupp D L B, Newnham G J, et al. Measuring Tree Stem Diameters Using Intensity Profiles from Ground-Based Scanning LiDAR from a Fixed Viewpoint[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66(1): 46-55 doi: 10.1016/j.isprsjprs.2010.08.006 |
[10] |
Wilson J W. Estimation of Foliage Denseness and Foliage Angle by Inclined Point Quadrats[J]. Australian Journal of Botany, 1963, 11(1): 95-105 doi: 10.1071/BT9630095 |
[11] |
Iio A, Kakubari Y, Mizunaga H. A Three-Dimensional Light Transfer Model Based on the Vertical Point-Quadrant Method and Monte-Carlo Simulation in a Fagus Crenata Forest Canopy on Mount Naeba in Japan[J]. Agricultural and Forest Meteorology, 2011, 151(4): 461-479 doi: 10.1016/j.agrformet.2010.12.003 |
[12] |
李振洪, 宋闯, 余琛, 等. 卫星雷达遥感在滑坡灾害探测和监测中的应用: 挑战与对策[J]. 武汉大学学报·信息科学版, 2019, 44(7): 967-979 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201907003.htm
Li Zhenhong, Song Chuang, Yu Chen, et al. Application of Satellite Radar Remote Sensing to Landslide Detection and Monitoring: Challenges and Solutions[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 967-979 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201907003.htm |
[13] |
Luo S Z, Wang C, Xi X H, et al. Estimating FPAR of Maize Canopy Using Airborne DiscreteReturn LiDAR Data[J]. Optics Express, 2014, 22 (5): 5 106-5 117 doi: 10.1364/OE.22.005106 |
[14] |
Li W, Niu Z, Chen H Y, et al. Remote Estimation of Canopy Height and Aboveground Biomass of Maize Using High-Resolution Stereo Images from a Low-Cost Unmanned Aerial Vehicle System[J]. Ecological Indicators, 2016, 67: 637-648 doi: 10.1016/j.ecolind.2016.03.036 |
[15] |
Yu Y, Yang X G, Fan W Y. Estimates of Forest Structure Parameters from GLAS Data and MultiAngle Imaging Spectrometer Data[J]. International Journal of Applied Earth Observation and Geoinformation, 2015, 38: 65-71 doi: 10.1016/j.jag.2014.12.013 |
[16] |
Miura N, Jones S D. Characterizing Forest Ecological Structure Using Pulse Types and Heights of Airborne Laser Scanning[J]. Remote Sensing of Environment, 2010, 114(5): 1 069-1 076 doi: 10.1016/j.rse.2009.12.017 |
[17] |
Véga C, Renaud J P, Durrieu S, et al. On the Interest of Penetration Depth, Canopy Area and Volume Metrics to Improve LiDAR-Based Models of Forest Parameters[J]. Remote Sensing of Environment, 2016, 175: 32-42 doi: 10.1016/j.rse.2015.12.039 |
[18] |
Liu L X, Pang Y, Li Z Y, et al. Combining Airborne and Terrestrial Laser Scanning Technologies to Measure Forest Understorey Volume[J]. Forests, 2017, 8(4): 111-119 doi: 10.3390/f8040111 |
[19] |
Hosoi F, Omasa K. Voxel-Based 3-D Modeling of Individual Trees for Estimating Leaf Area Density Using High-Resolution Portable Scanning Lidar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(12): 3 610-3 618 doi: 10.1109/TGRS.2006.881743 |
[20] |
Calders K, Adams J, Armston J, et al. Terrestrial Laser Scanning in Forest Ecology: Expanding the Horizon[J]. Remote Sensing of Environment, 2020, 251: 112102 doi: 10.1016/j.rse.2020.112102 |
[21] |
Detto M, Asner G P, Muller-Landau H C, et al. Spatial Variability in Tropical Forest Leaf Area Density from Multireturn Lidar and Modeling[J]. Journal of Geophysical Research: Biogeosciences, 2015, 120(2): 294-309 doi: 10.1002/2014JG002774 |
[22] |
Jupp D L B, Culvenor D S, Lovell J L, et al. Estimating Forest LAI Profiles and Structural Parameters Using a Ground-Based Laser Called 'Echidna (R)[J]. Tree Physiology, 2009, 29(2): 171-181 http://www.researchgate.net/profile/Glenn_Newnham/publication/23994363_Estimating_forest_LAI_profiles_and_structural_parameters_using_a_ground-based_laser_called_%27Echidna%27/links/0046352aec4a691505000000.pdf |
[23] |
Pimont F, Allard D, Soma M, et al. Estimators and Confidence Intervals for Plant Area Density at Voxel Scale with T-LiDAR[J]. Remote Sensing of Environment, 2018, 215: 343-370 doi: 10.1016/j.rse.2018.06.024 |
[24] |
Oshio H, Asawa T, Hoyano A, et al. Estimation of the Leaf Area Density Distribution of Individual Trees Using High-Resolution and Multi-Return Airborne LiDAR Data[J]. Remote Sensing of Environment, 2015, 166: 116-125 doi: 10.1016/j.rse.2015.05.001 |
[25] |
Yan G J, Hu R H, Luo J H, et al. Review of Indirect Optical Measurements of Leaf Area Index: Recent Advances, Challenges, and Perspectives[J]. Agricultural and Forest Meteorology, 2019, 265: 390-411 doi: 10.1016/j.agrformet.2018.11.033 |
[26] |
Hosoi F, Omasa K. Factors Contributing to Accuracy in the Estimation of the Woody Canopy Leaf Area Density Profile Using 3D Portable LiDAR Imaging [J]. Journal of Experimental Botany, 2007, 58 (12): 3 463-3 473 doi: 10.1093/jxb/erm203 |
[27] |
Lei L, Qiu C X, Li Z H, et al. Effect of Leaf Occlusion on Leaf Area Index Inversion of Maize Using UAV– LiDAR Data[J]. Remote Sensing, 2019, 11(9): 1 067 doi: 10.3390/rs11091067 |
[28] |
郭庆华, 苏艳军, 胡天宇, 等. 激光雷达森林生态应用——理论、方法及实例[M]. 北京: 高等教育出版社, 2018
Guo Qinghua, Su Yanjun, Hu Tianyu, et al. LiDAR Principles, Processing and Applications in Forest Ecology[M]. Beijing: Higher Education Press, 2018 |
[29] |
Raumonen P, Kaasalainen M, Åkerblom M, et al. Fast Automatic Precision Tree Models from Terrestrial Laser Scanner Data[J]. Remote Sensing, 2013, 5(2): 491-520 doi: 10.3390/rs5020491 |
[30] |
张颖, 刘亚文, 苗堃. 基于空间上下文关联的车载点云聚类方法[J]. 测绘地理信息, 2019, 44(4): 116-121 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXG201904028.htm
Zhang Ying, Liu Yawen, Miao Kun. A Spatial Context-Based Clustering Approach for Vehicle-Borne Laser Scanning Data[J]. Journal of Geomatics, 2019, 44(4): 116-121 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXG201904028.htm |
[31] |
Gastellu-Etchegorry J P, Lauret N, Yin T G, et al. DART: Recent Advances in Remote Sensing Data Modeling with Atmosphere, Polarization, and Chlorophyll Fluorescence[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(6): 1 939-1 404 http://www.researchgate.net/profile/Jean-Philippe_Gastellu-Etchegorry/publication/316143400_DART_Recent_Advances_in_Remote_Sensing_Data_Modeling_With_Atmosphere_Polarization_and_Chlorophyll_Fluorescence/links/5a1d75a3aca2726120b2c311/DART-Recent-Advances-in-Remote-Sensing-Data-Modeling-With-Atmosphere-Polarization-and-Chlorophyll-Fluorescence.pdf |
[32] |
Qi J B, Xie D H, Yin T G, et al. LESS: LargEScale Remote Sensing Data and Image Simulation Framework over Heterogeneous 3D Scenes[J]. Remote Sensing of Environment, 2019, 221: 695-706 doi: 10.1016/j.rse.2018.11.036 |