[1] Su W, Zhu D H, Huang J X, et al. Estimation of the Vertical Leaf Area Profile of Corn(Zea Mays) Plants Using Terrestrial Laser Scanning(TLS)[J]. Computers and Electronics in Agriculture, 2018, 150: 5-13 doi:  10.1016/j.compag.2018.03.037
[2] Li S H, Dai L Y, Wang H S, et al. Estimating Leaf Area Density of Individual Trees Using the Point Cloud Segmentation of Terrestrial LiDAR Data and a Voxel-Based Model[J]. Remote Sensing, 2017, 9 (12): 1 202 http://www.onacademic.com/detail/journal_1000040544495810_fbb8.html
[3] 于颖, 宋张亮, 范文义, 等. 植被冠层光谱和叶片光谱的尺度转换[J]. 武汉大学学报·信息科学版, 2018, 43(10): 1 560-1 565, 1 573 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201810018.htm

Yu Ying, Song Zhangliang, Fan Wenyi, et al. Scale Conversion from Canopy Spectra to Leaf Spectra[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10): 1 560-1 565, 1 573 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201810018.htm
[4] 王洪蜀. 基于地基激光雷达数据的单木与阔叶林叶面积密度反演[D]. 成都: 电子科技大学, 2015

Wang Hongshu. Leaf Area Density Inversion for a Single Tree and Broadleaf Forest Based on Terrestrial LiDAR Data[D]. Chengdu: University of Electronic Science and Technology of China, 2015
[5] Soma M, Pimont F, Durrieu S, et al. Enhanced Measurements of Leaf Area Density with T-LiDAR: Evaluating and Calibrating the Effects of Vegetation Heterogeneity and Scanner Properties [J]. Remote Sensing, 2018, 10(10): 1 580 doi:  10.3390/rs10101580
[6] 王洪蜀, 李世华, 郭加伟, 等. 地基激光雷达的玉兰林冠层叶面积密度反演[J]. 遥感学报, 2016, 20 (4): 570-578 https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201604006.htm

Wang Hongshu, Li Shihua, Guo Jiawei, et al. Retrieval of the Leaf Area Density of Magnolia Woody Canopy with Terrestrial Laser-Scanning Data[J]. Journal of Remote Sensing, 2016, 20(4): 570-578 https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201604006.htm
[7] Weiss M, Baret F, Smith G J, et al. Review of Methods for in Situ Leaf Area Index(LAI)Determination: Part Ⅱ. Estimation of LAI, Errors and Sam pling[J]. Agricultural and Forest Meteorology, 2004, 121(1): 37-53 http://europepmc.org/abstract/AGR/IND43620910
[8] Hosoi F, Omasa K. Detecting Seasonal Change of Broad-Leaved Woody Canopy Leaf Area Density Profile Using 3D Portable LiDAR Imaging[J]. Functional Plant Biology, 2009, 36: 998-1 005 doi:  10.1071/FP09113
[9] Lovell J L, Jupp D L B, Newnham G J, et al. Measuring Tree Stem Diameters Using Intensity Profiles from Ground-Based Scanning LiDAR from a Fixed Viewpoint[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66(1): 46-55 doi:  10.1016/j.isprsjprs.2010.08.006
[10] Wilson J W. Estimation of Foliage Denseness and Foliage Angle by Inclined Point Quadrats[J]. Australian Journal of Botany, 1963, 11(1): 95-105 doi:  10.1071/BT9630095
[11] Iio A, Kakubari Y, Mizunaga H. A Three-Dimensional Light Transfer Model Based on the Vertical Point-Quadrant Method and Monte-Carlo Simulation in a Fagus Crenata Forest Canopy on Mount Naeba in Japan[J]. Agricultural and Forest Meteorology, 2011, 151(4): 461-479 doi:  10.1016/j.agrformet.2010.12.003
[12] 李振洪, 宋闯, 余琛, 等. 卫星雷达遥感在滑坡灾害探测和监测中的应用: 挑战与对策[J]. 武汉大学学报·信息科学版, 2019, 44(7): 967-979 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201907003.htm

Li Zhenhong, Song Chuang, Yu Chen, et al. Application of Satellite Radar Remote Sensing to Landslide Detection and Monitoring: Challenges and Solutions[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 967-979 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201907003.htm
[13] Luo S Z, Wang C, Xi X H, et al. Estimating FPAR of Maize Canopy Using Airborne DiscreteReturn LiDAR Data[J]. Optics Express, 2014, 22 (5): 5 106-5 117 doi:  10.1364/OE.22.005106
[14] Li W, Niu Z, Chen H Y, et al. Remote Estimation of Canopy Height and Aboveground Biomass of Maize Using High-Resolution Stereo Images from a Low-Cost Unmanned Aerial Vehicle System[J]. Ecological Indicators, 2016, 67: 637-648 doi:  10.1016/j.ecolind.2016.03.036
[15] Yu Y, Yang X G, Fan W Y. Estimates of Forest Structure Parameters from GLAS Data and MultiAngle Imaging Spectrometer Data[J]. International Journal of Applied Earth Observation and Geoinformation, 2015, 38: 65-71 doi:  10.1016/j.jag.2014.12.013
[16] Miura N, Jones S D. Characterizing Forest Ecological Structure Using Pulse Types and Heights of Airborne Laser Scanning[J]. Remote Sensing of Environment, 2010, 114(5): 1 069-1 076 doi:  10.1016/j.rse.2009.12.017
[17] Véga C, Renaud J P, Durrieu S, et al. On the Interest of Penetration Depth, Canopy Area and Volume Metrics to Improve LiDAR-Based Models of Forest Parameters[J]. Remote Sensing of Environment, 2016, 175: 32-42 doi:  10.1016/j.rse.2015.12.039
[18] Liu L X, Pang Y, Li Z Y, et al. Combining Airborne and Terrestrial Laser Scanning Technologies to Measure Forest Understorey Volume[J]. Forests, 2017, 8(4): 111-119 doi:  10.3390/f8040111
[19] Hosoi F, Omasa K. Voxel-Based 3-D Modeling of Individual Trees for Estimating Leaf Area Density Using High-Resolution Portable Scanning Lidar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(12): 3 610-3 618 doi:  10.1109/TGRS.2006.881743
[20] Calders K, Adams J, Armston J, et al. Terrestrial Laser Scanning in Forest Ecology: Expanding the Horizon[J]. Remote Sensing of Environment, 2020, 251: 112102 doi:  10.1016/j.rse.2020.112102
[21] Detto M, Asner G P, Muller-Landau H C, et al. Spatial Variability in Tropical Forest Leaf Area Density from Multireturn Lidar and Modeling[J]. Journal of Geophysical Research: Biogeosciences, 2015, 120(2): 294-309 doi:  10.1002/2014JG002774
[22] Jupp D L B, Culvenor D S, Lovell J L, et al. Estimating Forest LAI Profiles and Structural Parameters Using a Ground-Based Laser Called 'Echidna (R)[J]. Tree Physiology, 2009, 29(2): 171-181 http://www.researchgate.net/profile/Glenn_Newnham/publication/23994363_Estimating_forest_LAI_profiles_and_structural_parameters_using_a_ground-based_laser_called_%27Echidna%27/links/0046352aec4a691505000000.pdf
[23] Pimont F, Allard D, Soma M, et al. Estimators and Confidence Intervals for Plant Area Density at Voxel Scale with T-LiDAR[J]. Remote Sensing of Environment, 2018, 215: 343-370 doi:  10.1016/j.rse.2018.06.024
[24] Oshio H, Asawa T, Hoyano A, et al. Estimation of the Leaf Area Density Distribution of Individual Trees Using High-Resolution and Multi-Return Airborne LiDAR Data[J]. Remote Sensing of Environment, 2015, 166: 116-125 doi:  10.1016/j.rse.2015.05.001
[25] Yan G J, Hu R H, Luo J H, et al. Review of Indirect Optical Measurements of Leaf Area Index: Recent Advances, Challenges, and Perspectives[J]. Agricultural and Forest Meteorology, 2019, 265: 390-411 doi:  10.1016/j.agrformet.2018.11.033
[26] Hosoi F, Omasa K. Factors Contributing to Accuracy in the Estimation of the Woody Canopy Leaf Area Density Profile Using 3D Portable LiDAR Imaging [J]. Journal of Experimental Botany, 2007, 58 (12): 3 463-3 473 doi:  10.1093/jxb/erm203
[27] Lei L, Qiu C X, Li Z H, et al. Effect of Leaf Occlusion on Leaf Area Index Inversion of Maize Using UAV– LiDAR Data[J]. Remote Sensing, 2019, 11(9): 1 067 doi:  10.3390/rs11091067
[28] 郭庆华, 苏艳军, 胡天宇, 等. 激光雷达森林生态应用——理论、方法及实例[M]. 北京: 高等教育出版社, 2018

Guo Qinghua, Su Yanjun, Hu Tianyu, et al. LiDAR Principles, Processing and Applications in Forest Ecology[M]. Beijing: Higher Education Press, 2018
[29] Raumonen P, Kaasalainen M, Åkerblom M, et al. Fast Automatic Precision Tree Models from Terrestrial Laser Scanner Data[J]. Remote Sensing, 2013, 5(2): 491-520 doi:  10.3390/rs5020491
[30] 张颖, 刘亚文, 苗堃. 基于空间上下文关联的车载点云聚类方法[J]. 测绘地理信息, 2019, 44(4): 116-121 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXG201904028.htm

Zhang Ying, Liu Yawen, Miao Kun. A Spatial Context-Based Clustering Approach for Vehicle-Borne Laser Scanning Data[J]. Journal of Geomatics, 2019, 44(4): 116-121 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXG201904028.htm
[31] Gastellu-Etchegorry J P, Lauret N, Yin T G, et al. DART: Recent Advances in Remote Sensing Data Modeling with Atmosphere, Polarization, and Chlorophyll Fluorescence[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(6): 1 939-1 404 http://www.researchgate.net/profile/Jean-Philippe_Gastellu-Etchegorry/publication/316143400_DART_Recent_Advances_in_Remote_Sensing_Data_Modeling_With_Atmosphere_Polarization_and_Chlorophyll_Fluorescence/links/5a1d75a3aca2726120b2c311/DART-Recent-Advances-in-Remote-Sensing-Data-Modeling-With-Atmosphere-Polarization-and-Chlorophyll-Fluorescence.pdf
[32] Qi J B, Xie D H, Yin T G, et al. LESS: LargEScale Remote Sensing Data and Image Simulation Framework over Heterogeneous 3D Scenes[J]. Remote Sensing of Environment, 2019, 221: 695-706 doi:  10.1016/j.rse.2018.11.036