文章信息
- 杨正辉, 魏子卿, 马健
- YANG Zhenghui, WEI Ziqing, MA Jian
- 第二类连带勒让德函数及其一阶、二阶导数的递推计算方法
- Recursive Calculation Method for the Second Kind of Associated Legendre Functions and Its First and Second Derivatives
- 武汉大学学报·信息科学版, 2020, 45(2): 213-218
- Geomatics and Information Science of Wuhan University, 2020, 45(2): 213-218
- http://dx.doi.org/10.13203/j.whugis20180203
-
文章历史
收稿日期: 2018-09-04

2. 西安测绘研究所, 陕西 西安, 710054;
3. 信息工程大学地理空间信息学院, 河南 郑州, 450052
2. Xi'an Research Institute of Surveying and Mapping, Xi'an 710054, China;
3. Institute of Geospatial Information, Information Engineering University, Zhengzhou 450052, China
从20世纪80年代开始,学者们认识到地球扁率在求解重力场边值问题中的重要性,于是在建立地球重力场球谐级数模型时,增加了椭球改正项,并开展了对椭球谐级数的研究。当前国际上关于各种地球重力场模型的计算都是以球近似问题的解加上椭球改正来得到[1-3]。为了确定1 cm级精度大地水准面[4],越来越多的学者致力于椭球域大地边值问题的研究[5-8]。由于地球的几何形状更接近于椭球,如果利用椭球谐直接逼近计算,逼近误差应该小于球谐逼近所带来的误差[9],这样会提高椭球面边值问题的解算精度,使全球1 cm级精度的大地水准面的实现成为可能。
在地球重力场位模型椭球谐级数展开式中,最主要的问题是关于第二类连带勒让德函数
本文基于Gauss超几何函数的定义,详细推导了第二类连带勒让德函数及其一阶、二阶导数的修正Jekeli递推计算公式,并与传统的Jekeli递推计算方法[14]进行比较,证明了修正Jekeli递推计算方法的收敛速度更快,收敛精度更稳定,为解决构建地球重力场的椭球谐位模型及其泛函计算有重要的理论指导作用。
1 位椭球谐理论对于地球外空间的任意一点P的引力位
| $ \begin{array}{c}V(u, \vartheta , \lambda )=\frac{\mathrm{G}\mathrm{M}}{R}\stackrel{\mathrm{\infty }}{\sum \limits_{n=0}}\stackrel{n}{\sum \limits_{m=0}}\frac{{Q}_{nm}\left(\mathrm{i}\frac{u}{E}\right)}{{Q}_{nm}\left(\mathrm{i}\frac{b}{E}\right)}\times \\ \left({\overline{C}}_{nm}^{e}\mathrm{c}\mathrm{o}\mathrm{s}\right(m\lambda )+{\overline{S}}_{nm}^{e}\mathrm{s}\mathrm{i}\mathrm{n}(m\lambda \left)\right){\overline{P}}_{nm}\left(\mathrm{c}\mathrm{o}\mathrm{s}\vartheta \right)\end{array} $ | (1) |
式中,
第二类连带勒让德函数的定义有许多种,本文使用如下定义[16]:
| $ \begin{array}{c}{Q}_{nm}(n, m)={(-1)}^{m}\frac{{2}^{n}n!(n+m)!}{(2n+1)!}\frac{({z}^{2}{-1)}^{\frac{m}{2}}}{{z}^{n+m+1}}\times \\ {}_{2}{F}_{1}(\frac{n+m+2}{2}, \frac{n+m+1}{2}, n+\frac{3}{2}, \frac{1}{{z}^{2}})\end{array} $ | (2) |
式中,
| $ {}_{2}{F}_{1}(\alpha , \beta , \gamma , \delta )=\stackrel{\mathrm{\infty }}{\sum \limits_{k=0}}\frac{{\left(\alpha \right)}_{k}{\left(\beta \right)}_{k}}{{\left(\gamma \right)}_{k}}\frac{{\delta }^{k}}{k!} $ | (3) |
其中,
因此,为了得到第二类连带勒让德函数及其一阶、二阶导数更加快速、稳定的递推计算方法,可以对式(3)Gauss超几何函数中增大
传统Jekeli递推计算的思路是利用式(2)定义的第二类连带勒让德函数,对其乘以一个常数,使其转化为第二类连带勒让德实函数
| $ \begin{array}{c}{\overline{S}}_{n, m}\left(\frac{u}{E}\right)=\frac{{\left(\frac{R}{E}\right)}^{n+1}{\mathrm{i}}^{n+1}(2n+1)!}{{2}^{n}n!}\times \\ \sqrt{\frac{{\varepsilon }_{m}}{(2n+1)(n-m)!(n+m)!}}{\overline{Q}}_{n, m}\left(z\right)\end{array} $ | (4) |
其中,
| $ {\overline{Q}}_{n, m}\left(z\right)=\sqrt{\frac{(2n+1)(n-m)!}{{\varepsilon }_{m}(n+m)!}}{Q}_{n, m}\left(z\right) $ | (5) |
式中,当
| $ \begin{array}{c}V(u, \vartheta , \lambda )=\frac{\mathrm{G}\mathrm{M}}{R}\stackrel{\mathrm{\infty }}{\sum \limits_{n=0}}\stackrel{n}{\sum \limits_{m=0}}\frac{{\overline{S}}_{n, m}\left(\frac{u}{E}\right)}{{\overline{S}}_{n, m}\left(\frac{b}{E}\right)}\times \\ \left({\overline{C}}_{nm}^{e}\mathrm{c}\mathrm{o}\mathrm{s}\right(m\lambda )+{\overline{S}}_{nm}^{e}\mathrm{s}\mathrm{i}\mathrm{n}(m\lambda \left)\right){\overline{P}}_{nm}\left(\mathrm{c}\mathrm{o}\mathrm{s}\vartheta \right)\end{array} $ | (6) |
式(2)结合式(4),得到
| $ \begin{array}{c}{\overline{S}}_{n, m}\left(\frac{u}{E}\right)={(1+\frac{{E}^{2}}{{u}^{2}})}^{\frac{m}{2}}{\left(\frac{R}{u}\right)}^{n+1}\times \\ {}_{2}{}^{}{F}_{1}(\frac{n+m+2}{2}, \frac{n+m+1}{2}, n+\frac{3}{2}, -\frac{{E}^{2}}{{u}^{2}})\end{array} $ | (7) |
接下来给出
1)
| $ {\overline{S}}_{n, m}^{0}={\overline{S}}_{n, m}\left(\frac{u}{E}\right)={\beta }_{n, m}\stackrel{\mathrm{\infty }}{\sum \limits_{k=0}}{\alpha }_{n, m, k} $ | (8) |
其中,
2)
| $ {\overline{S}}_{n, m}^{1}=\frac{\partial {\overline{S}}_{n, m}^{0}}{\partial u}=\frac{\partial {\beta }_{n, m}}{\partial u}\stackrel{\mathrm{\infty }}{\sum \limits_{k=0}}{\alpha }_{n, m, k}+{\beta }_{n, m}\stackrel{\mathrm{\infty }}{\sum \limits_{k=0}}\frac{\partial {\alpha }_{n, m, k}}{\partial u} $ | (9) |
其中,
3)
| $ \begin{array}{c}{\overline{S}}_{n, m}^{2}=\frac{{\partial }^{2}{\overline{S}}_{n, m}^{0}}{\partial u}=\frac{{\partial }^{2}{\beta }_{n, m}}{\partial {u}^{2}}\stackrel{\mathrm{\infty }}{\sum \limits_{k=0}}{\alpha }_{n, m, k}+\\ 2\frac{\partial {\beta }_{n, m}}{\partial u}\stackrel{\mathrm{\infty }}{\sum \limits_{k=0}}\frac{\partial {\alpha }_{n, m, k}}{\partial u}+{\beta }_{n, m}\stackrel{\mathrm{\infty }}{\sum \limits_{k=0}}\frac{{\partial }^{2}{\alpha }_{n, m, k}}{\partial {u}^{2}}\end{array} $ | (10) |
其中,
为了使第二类连带勒让德函数及其一阶、二阶导数的级数展开式收敛速度更快、收敛更加稳定,本文对式(3)中定义的Gauss超几何函数
| $ \begin{array}{c}{}_{2}{}^{}{F}_{1}(\alpha , \beta , \gamma , \delta )={(1-\delta )}^{\gamma -\alpha -\beta }\times \\ {}_{2}{}^{}{F}_{1}(\gamma -\alpha , \gamma -\beta , \gamma , \delta )\end{array} $ | (11) |
第二类连带勒让德实函数的修正Jekeli递推计算公式为:
| $ \begin{array}{c}\mathrm{*}{\overline{S}}_{n, m}\left(\frac{u}{E}\right)={(1+\frac{{E}^{2}}{{u}^{2}})}^{-\frac{m}{2}}{\left(\frac{R}{u}\right)}^{n+1}\times \\ {}_{2}{}^{}{F}_{1}(\frac{n-m+2}{2}, \frac{n-m+1}{2}, n+\frac{3}{2}, -\frac{{E}^{2}}{{u}^{2}})\end{array} $ | (12) |
1)
| $ \mathrm{*}{\overline{S}}_{n, m}^{0}={\overline{S}}_{n, m}\left(\frac{u}{E}\right)={\beta }_{n, m}\stackrel{\mathrm{\infty }}{\sum \limits_{k=0}}{\alpha }_{n, m, k} $ | (13) |
其中,
| $ \frac{\partial {\beta }_{n, m}}{\partial u}=-\frac{{E}^{2}{\beta }_{n, m-1}}{({u}^{2}+{E}^{2}{)}^{\frac{3}{2}}}+\frac{u}{\sqrt{{u}^{2}+{E}^{2}}}\frac{\partial {\beta }_{n, m-1}}{\partial u} $ | (14) |
2)
| $ \mathrm{*}{\overline{S}}_{n, m}^{1}=\frac{\partial \mathrm{*}{\overline{S}}_{n, m}^{0}}{\partial u}=\frac{\partial {\beta }_{n, m}}{\partial u}\stackrel{\mathrm{\infty }}{\sum \limits_{k=0}}{\alpha }_{n, m, k}+{\beta }_{n, m}\stackrel{\mathrm{\infty }}{\sum \limits_{k=0}}\frac{\partial {\alpha }_{n, m, k}}{\partial u} $ | (15) |
其中,
3)
| $ \begin{array}{c}\mathrm{*}{\overline{S}}_{n, m}^{2}=\frac{{\partial }^{2}\mathrm{*}{\overline{S}}_{n, m}^{0}}{\partial u}=\frac{{\partial }^{2}{\beta }_{n, m}}{\partial {u}^{2}}\stackrel{\mathrm{\infty }}{\sum \limits_{k=0}}{\alpha }_{n, m, k}+\\ 2\frac{\partial {\beta }_{n, m}}{\partial u}\stackrel{\mathrm{\infty }}{\sum \limits_{k=0}}\frac{\partial {\alpha }_{n, m, k}}{\partial u}+{\beta }_{n, m}\stackrel{\mathrm{\infty }}{\sum \limits_{k=0}}\frac{{\partial }^{2}{\alpha }_{n, m, k}}{\partial {u}^{2}}\end{array} $ | (16) |
其中,
为了检验推导的修正Jekeli递推方法计算第二类连带勒让德函数及其一阶、二阶导数的正确性,可以构建类似于第一类连带勒让德函数满足的微分方程,在
| $ \begin{array}{c}({u}^{2}+{E}^{2})\mathrm{*}{\overline{S}}_{n, m}^{2}+2u\mathrm{*}{\overline{S}}_{n, m}^{1}-\\ \left[n\right(n+1)-\frac{{m}^{2}{E}^{2}}{{u}^{2}+{E}^{2}}]\mathrm{*}{\overline{S}}_{n, m}^{0}=0\end{array} $ | (17) |
图 1为传统Jekeli和修正Jekeli递推方法的收敛性比较。由图 1可知,当计算特殊情形,即在参考椭球边界面上
|
| 图 1 传统Jekeli和修正Jekeli递推方法收敛性比较 Fig. 1 Concergence Comparison of the Traditional Jekeli's and the Revised Jekeli's Recurrence Methods |
图 2为传统Jekeli方法和修正Jekeli方法计算LDE方程的比较。由图 2可知,传统Jekeli递推方法计算的
|
| 图 2 传统Jekeli方法和修正Jekeli方法计算LDE方程比较 Fig. 2 LDE Equations Comparison of the Traditional Jekeli's and the Revised Jekeli's Methods |
图 3为修正Jekeli方法计算的各阶导数。由图 3可知,对于不同的高度h,即在参考椭球边界面
|
| 图 3 修正Jekeli方法计算的各阶导数 Fig. 3 Each Derivative Derived from the Revised Jekili's Method |
本文推导出了第二类连带勒让德函数及其一阶、二阶导数的修正Jekeli递推计算方法,并与传统的Jekeli递推计算方法进行比较,结果表明,该递推方法计算收敛速度更快,收敛精度更加稳定。在具体计算过程中,推导了关于
| [1] |
Zhang Liming, Li Fei, Yue Jianli. Effort of Gravity of Disturbance Precision on GPS Boundary Value Problem[J]. Geomatics and Information Science of Wuhan University, 2007, 32(1): 15-18. (张利明, 李斐, 岳建利. 扰动重力对GPS重力边值问题的影响研究[J]. 武汉大学学报·信息科学版, 2007, 32(1): 15-18. ) |
| [2] |
Li Jiancheng, Chen Junyong, Ning Jinsheng, et al. The Theory of Earth Gravity Field Approximation and Determination of 2000 Quasi-Geoid in China[M]. Wuhan: Wuhan University Press, 2003. (李建成, 陈俊勇, 宁津生, 等. 地球重力场逼近理论与中国2000似大地水准面的确定[M]. 武汉: 武汉大学出版社, 2003. )
|
| [3] |
Li Jiancheng, Chao Dingbo. Derivation of Hotine Function Using Poisson Integral and Application of Hotine Formula[J]. Geomatics and Information Science of Wuhan University, 2003, 28(S1): 55-57. (李建成, 晁定波. 利用Poision积分推导Hotine函数及Hotine公式应用问题[J]. 武汉大学学报·信息科学版, 2003, 28(S1): 55-57. ) |
| [4] |
Wei Ziqing. Brief Introduction to the Geoid[J]. Geospatial Information, 2009, 7(1): 1-3. (魏子卿. 大地水准面短议[J]. 地理空间信息, 2009, 7(1): 1-3. DOI:10.3969/j.issn.1672-4623.2009.01.001 ) |
| [5] |
Zhang Chuanding, Lu Zhonglian, Wu Xiaoping. On the Ellipsoidal Poision, Hotine and Stokes' Integration Formula[J]. Acta Geodaetica et Cartographica Sinica, 1997, 26(2): 176-183. (张传定, 陆仲连, 吴晓平. 椭球域大地边值问题的实用解式[J]. 测绘学报, 1997, 26(2): 176-183. DOI:10.3321/j.issn:1001-1595.1997.02.013 ) |
| [6] |
Zhang Chijun, Luo Mingjin, Liu Lintao. Solving Molodensky Problem with Ellipsoidal Function[J]. Journal of Geodesy and Geodynamics, 2014, 34(6): 148-156. (张赤军, 骆鸣津, 柳林涛. 用椭球函数解Molodensky问题[J]. 大地测量与地球动力学, 2014, 34(6): 148-156. ) |
| [7] |
Wei Ziqing. An Introduction to the Second Geodetic Boundary Value Problem with Geocentric Reference Ellipsoid[J]. Geomatics Science and Engineering, 2015, 35(1): 1-6. (魏子卿. 以地心参考椭球面为边界面的第二大地边值问题引论[J]. 测绘科学与工程, 2015, 35(1): 1-6. ) |
| [8] |
Wei Ziqing, Yang Zhenghui. Helmert Disturbing Potential and Its Integral Kernel Function with Ellipsoidal Harmonic Formula[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 1 768-1 774. (魏子卿, 杨正辉. Helmert扰动位及其积分核函数的椭球实用公式[J]. 武汉大学学报·信息科学版, 2018, 43(12): 1 768-1 774. ) |
| [9] |
Holmes S A, Pavlis N K. Some Aspects of Harmonic Analysis of Data Gridded on the Ellipsoid[C]. The 1st International Symposium of the International Gravity Field Service, Istanbul, Turkey, 2006
|
| [10] |
Hormander L. The Boundary Problems of Physical Geodesy[J]. Archive for Rational Mechanics and Analysis, 1976, 62(1): 1-52. DOI:10.1007/BF00251855 |
| [11] |
Yu Jinhai. Establishment of Ellipsoidal Harmonic Model for Earth Gravity Field[J]. Journal of Geomatics Science and Technology, 1994, 11(4): 309-317. (于锦海. 地球重力场椭球谐模型的建立[J]. 测绘科学技术学报, 1994, 11(4): 309-317. ) |
| [12] |
Thong N C, Grafarend E W. A Spheroidal Harmonic Model of the Terrestrial Gravitational Field[J]. Manuscripta Geodaetica, 1989, 14: 285-304. |
| [13] |
Jekeli C. The Exact Transformation Between Ellipsoidal and Spherical Harmonic Expansions[J]. Manuscripta Geodaetica, 1988, 13(2): 106-113. |
| [14] |
Jiang Tao, Wang Zhengtao, Li Dawei, et al. Fast Algorithm for the Discrete Summation of Stokes' and Hotine's Integral[J]. Geomatics and Information Science of Wuhan University, 2012, 37(5): 606-609. (蒋涛, 王正涛, 李大炜, 等. Stokes和Hotine积分离散求和的快速算法[J]. 武汉大学学报·信息科学版, 2012, 37(5): 606-609. ) |
| [15] |
Hofmann-Wellenhof B, Moritz H. Physical Geodesy[M]. New York: Springer, 2006.
|
| [16] |
Hobson E W. The Theory of Spherical and Ellipsoidal Harmonics[M]. Cambridge: Cambridge University Press, 1931.
|
| [17] |
Maus S. An Ellipsoidal Harmonic Representation of Earth's Lithospheric Magnetic Field to Degree and Order 720[J]. Geochemistry Geophysics Geosystems, 2013, 11(6): 125-128. |
2020, Vol. 45

